A DETOUR ON A CLASS OF NONLOCAL DEGENERATE OPERATORS

被引:0
|
作者
Schiera, Delia [1 ]
机构
[1] Univ Lisbon, Dept Matemat, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Maximum and comparison principles; Fully nonlinear degenerate elliptic PDE; Nonlocal operators; Eigenvalue problem; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EIGENVALUES; GUIDE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some recent results on a class of degenerate operators which are modeled on the fractional Laplacian, converge to the truncated Laplacian, and are extremal among operators with fractional diffusion along subspaces of possibly different dimensions. In particular, we will recall basic properties of these operators, validity of maximum principles, and related phenomena.
引用
收藏
页码:95 / 115
页数:21
相关论文
共 50 条
  • [21] ON HEAT KERNELS OF A CLASS OF DEGENERATE ELLIPTIC OPERATORS
    Calin, Ovidiu
    Chang, Der-Chen
    Hu, Jishan
    Li, Yutian
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (02) : 309 - 340
  • [22] The submartingale problem for a class of degenerate elliptic operators
    Bass, Richard F.
    Lavrentiev, Alexander
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) : 415 - 449
  • [24] CLASS OF DEGENERATE ELLIPTICAL OPERATORS WITH SEVERAL VARIABLES
    BOLLEY, P
    CAMUS, J
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1973, (34): : 55 - 140
  • [25] PARTIAL HYPOELLIPTICITY OF CLASS OF ELLIPTICAL AND DEGENERATE OPERATORS
    BOLLEY, P
    CAMUS, J
    HELFFER, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (11): : 775 - 778
  • [26] The submartingale problem for a class of degenerate elliptic operators
    Richard F. Bass
    Alexander Lavrentiev
    Probability Theory and Related Fields, 2007, 139 : 415 - 449
  • [27] Harnack inequality for a class of degenerate elliptic operators
    Fernandes, JD
    Groisman, J
    Melo, ST
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (01): : 129 - 146
  • [28] Liouville Theorems for a General Class of Nonlocal Operators
    Fall, Mouhamed Moustapha
    Weth, Tobias
    POTENTIAL ANALYSIS, 2016, 45 (01) : 187 - 200
  • [29] Numerical Methods for a Diffusive Class of Nonlocal Operators
    Gabriela Jaramillo
    Loic Cappanera
    Cory Ward
    Journal of Scientific Computing, 2021, 88
  • [30] Numerical Methods for a Diffusive Class of Nonlocal Operators
    Jaramillo, Gabriela
    Cappanera, Loic
    Ward, Cory
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (01)