Data-driven longitudinal characterization of neonatal health and morbidity

被引:11
|
作者
De Francesco, Davide [1 ,2 ,3 ]
Reiss, Jonathan D. [2 ]
Roger, Jacquelyn [4 ,5 ]
Tang, Alice S. [4 ,5 ,6 ]
Chang, Alan L. [1 ,2 ,3 ]
Becker, Martin [1 ,2 ,3 ]
Phongpreecha, Thanaphong [1 ,2 ,3 ,7 ]
Espinosa, Camilo [1 ,2 ,3 ]
Morin, Susanna [4 ,5 ]
Berson, Eloise [1 ,3 ,7 ]
Thuraiappah, Melan [1 ,2 ,3 ]
Le, Brian L. [4 ,5 ,8 ]
Ravindra, Neal G. [1 ,2 ,3 ]
Payrovnaziri, Seyedeh Neelufar [1 ,2 ,3 ]
Mataraso, Samson [1 ,2 ,3 ]
Kim, Yeasul [1 ,2 ,3 ]
Xue, Lei [1 ,2 ,3 ]
Rosenstein, Melissa G. [9 ]
Oskotsky, Tomiko [4 ,5 ,8 ]
Maric, Ivana [1 ,2 ,3 ]
Gaudilliere, Brice [1 ]
Carvalho, Brendan [1 ]
Bateman, Brian T. [1 ]
Angst, Martin S. [1 ]
Prince, Lawrence S. [2 ]
Blumenfeld, Yair J. [10 ]
Benitz, William E. [2 ]
Fuerch, Janene H. [2 ]
Shaw, Gary M. [2 ]
Sylvester, Karl G. [11 ]
Stevenson, David K. [2 ]
Sirota, Marina [4 ,8 ]
Aghaeepour, Nima [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Anesthesiol Perioperat & Pain Med, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[4] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Grad Program Biol & Med Informat, San Francisco, CA 94143 USA
[6] Univ Calif San Francisco, Grad Program Bioengn, San Francisco, CA 94158 USA
[7] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[8] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
[9] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Sci, San Francisco, CA 94158 USA
[10] Stanford Univ, Dept Obstet & Gynecol, Sch Med, Stanford, CA 94305 USA
[11] Stanford Univ, Dept Surg, Sch Med, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
INFANTS; MORTALITY; OUTCOMES; CARE;
D O I
10.1126/scitranslmed.adc9854
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Although prematurity is the single largest cause of death in children under 5 years of age, the current definition of prematurity, based on gestational age, lacks the precision needed for guiding care decisions. Here, we propose a longitudinal risk assessment for adverse neonatal outcomes in newborns based on a deep learning model that uses electronic health records (EHRs) to predict a wide range of outcomes over a period starting shortly before conception and ending months after birth. By linking the EHRs of the Lucile Packard Children's Hospital and the Stanford Healthcare Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 and 2018. Maternal and newborn EHRs were extracted and used to train a multi-input multitask deep learning model, featuring a long short-term memory neural network, to predict 24 different neonatal outcomes. An additional cohort of 10,250 mother-newborn dyads delivered at the same Stanford Hospitals from 2019 to September 2020 was used to validate the model. Areas under the receiver operating characteristic curve at delivery exceeded 0.9 for 10 of the 24 neonatal outcomes considered and were between 0.8 and 0.9 for 7 additional outcomes. Moreover, comprehensive association analysis identified multiple known associations between various maternal and neonatal features and specific neonatal outcomes. This study used linked EHRs from more than 30,000 mother-newborn dyads and would serve as a resource for the investigation and prediction of neonatal outcomes. An interactive website is available for independent investigators to leverage this unique dataset: https://maternal-child-health-associations.shinyapps.io/shiny_app/.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A data-driven health index for neonatal morbidities
    De Francesco, Davide
    Blumenfeld, Yair J.
    Maric, Ivana
    Mayo, Jonathan A.
    Chang, Alan L.
    Fallahzadeh, Ramin
    Phongpreecha, Thanaphong
    Butwick, Alex J.
    Xenochristou, Maria
    Phibbs, Ciaran S.
    Bidoki, Neda H.
    Becker, Martin
    Culos, Anthony
    Espinosa, Camilo
    Liu, Qun
    Sylvester, Karl G.
    Gaudilliere, Brice
    Angst, Martin S.
    Stevenson, David K.
    Shaw, Gary M.
    Aghaeepour, Nima
    [J]. ISCIENCE, 2022, 25 (04)
  • [2] Data-Driven Health Care
    Byrnes, Nanette
    [J]. TECHNOLOGY REVIEW, 2014, 117 (05) : 65 - 66
  • [3] Data-Driven Health Care
    不详
    [J]. TECHNOLOGY REVIEW, 2014, 117 (06) : 8 - 8
  • [4] Challenges in data-driven site characterization
    Phoon, Kok-Kwang
    Ching, Jianye
    Shuku, Takayuki
    [J]. GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 114 - 126
  • [5] Benchmarking Data-Driven Site Characterization
    Phoon, Kok-Kwang
    Shuku, Takayuki
    Ching, Jianye
    Yoshida, Ikumasa
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2023, 9 (02)
  • [6] Data-driven public health security
    Li, Cuiping
    Wu, Linhuan
    Shu, Chang
    Bao, Yiming
    Ma, Juncai
    Song, Shuhui
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (09): : 1156 - 1163
  • [7] A data-driven approach for neonatal mortality rate forecasting
    Rodriguez, Elen
    Rodriguez, Elias
    Nascimento, Luiz
    da Silva, Aneirson
    Marins, Fernando
    [J]. 5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [8] A Data-driven Characterization of Modern Android Spyware
    Pierazzi, Fabio
    Mezzour, Ghita
    Han, Qian
    Colajanni, Michele
    Subrahmanian, V. S.
    [J]. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2020, 11 (01)
  • [9] Data-driven Demand Response Characterization and Quantification
    Le Ray, Guillaume
    Pinson, Pierre
    Larsen, Emil Mahler
    [J]. 2017 IEEE MANCHESTER POWERTECH, 2017,
  • [10] A data-driven method of health monitoring for spacecraft
    Kang, Xu
    Pi, Dechang
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (02): : 435 - 451