THE OBERBECK-BOUSSINESQ SYSTEM WITH NON-LOCAL BOUNDARY CONDITIONS

被引:6
|
作者
Abbatiello, Anna [1 ]
Feireisl, Eduard [2 ]
机构
[1] Sapienza Univ Rome, Dept Math G Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 1, Czech Republic
关键词
Oberbeck-Boussinesq system; non-local boundary condition; strong solution; EQUATIONS;
D O I
10.1090/qam/1635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Oberbeck-Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier-Stokes-Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval [0, Tmax). Moreover, Tmax = oo in the two-dimensional setting.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [21] Rigorous Derivation of the Oberbeck-Boussinesq Approximation Revealing Unexpected Term
    Bella, Peter
    Feireisl, Eduard
    Oschmann, Florian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (03) : 1245 - 1273
  • [22] The Oberbeck-Boussinesq problem modified by a thermo-absorption term
    Antontsev, S. N.
    de Oliveira, H. B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 802 - 817
  • [23] The Oberbeck-Boussinesq Approximation as a Singular Limit of the Full Navier-Stokes-Fourier System
    Feireisl, Eduard
    Novotny, Antonin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (02) : 274 - 302
  • [24] Oberbeck-Boussinesq free convection of water based nanoliquids in a vertical channel using Dirichlet, Neumann and Robin boundary conditions on temperature
    Makhatar, Nur Asiah Mohd
    Siddheshwar, P. G.
    Saleh, Habibis
    Hashim, Ishak
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (03) : 2285 - 2297
  • [25] THE OBERBECK-BOUSSINESQ APPROXIMATION AND RAYLEIGH-BENARD CONVECTION REVISITED
    Feireisl, Eduard
    Rocca, Elisabetta
    Schimperna, Giulio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (08) : 2387 - 2402
  • [26] The Eckhaus criterion for convection roll solutions of the Oberbeck-Boussinesq equations
    Kagei, Y
    vonWahl, W
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (03) : 563 - 620
  • [27] Large self-similar solutions to Oberbeck-Boussinesq system with Newtonian gravitational field ☆
    Brandolese, Lorenzo
    Karch, Grzegorz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 424 : 139 - 158
  • [28] Local well-posedness for two-phase fluid motion in the Oberbeck-Boussinesq approximation
    Hao, Chengchun
    Zhang, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (07) : 2099 - 2131
  • [29] Unidirectional flows of binary mixtures within the framework of the Oberbeck-Boussinesq model
    Andreev, V. K.
    Stepanova, I. V.
    FLUID DYNAMICS, 2016, 51 (02) : 136 - 147
  • [30] Assessment of the Oberbeck-Boussinesq approximation for buoyancy-driven turbulence in air
    Cimarelli, A.
    Fenzi, A.
    Angeli, D.
    Stalio, E.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 243