A novel deep learning-based perspective for tooth numbering and caries detection

被引:7
|
作者
Ayhan, Baturalp [1 ]
Ayan, Enes [2 ]
Bayraktar, Yusuf [1 ]
机构
[1] Kirikkale Univ, Fac Dent, Dept Restorat Dent, Kirikkale, Turkiye
[2] Kirikkale Univ, Fac Engn & Architecture, Dept Comp Engn, Kirikkale, Turkiye
关键词
Artificial intelligence; Digital bitewing radiography; Deep learning; Detection; Numbering; Dental caries; CONVOLUTIONAL NEURAL-NETWORK; BITE-WING RADIOGRAPHY; PROXIMAL CARIES; DENTAL-CARIES; OCCLUSAL CARIES; TEETH; CLASSIFICATION; DIAGNOSIS; ACCURACY; FILM;
D O I
10.1007/s00784-024-05566-w
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
ObjectivesThe aim of this study was automatically detecting and numbering teeth in digital bitewing radiographs obtained from patients, and evaluating the diagnostic efficiency of decayed teeth in real time, using deep learning algorithms.MethodsThe dataset consisted of 1170 anonymized digital bitewing radiographs randomly obtained from faculty archives. After image evaluation and labeling process, the dataset was split into training and test datasets. This study proposed an end-to-end pipeline architecture consisting of three stages for matching tooth numbers and caries lesions to enhance treatment outcomes and prevent potential issues. Initially, a pre-trained convolutional neural network (CNN) utilized to determine the side of the bitewing images. Then, an improved CNN model YOLOv7 was proposed for tooth numbering and caries detection. In the final stage, our developed algorithm assessed which teeth have caries by comparing the numbered teeth with the detected caries, using the intersection over union value for the matching process.ResultsAccording to test results, the recall, precision, and F1-score values were 0.994, 0.987 and 0.99 for teeth detection, 0.974, 0.985 and 0.979 for teeth numbering, and 0.833, 0.866 and 0.822 for caries detection, respectively. For teeth numbering and caries detection matching performance; the accuracy, recall, specificity, precision and F1-Score values were 0.934, 0.834, 0.961, 0.851 and 0.842, respectively.ConclusionsThe proposed model exhibited good achievement, highlighting the potential use of CNNs for tooth detection, numbering, and caries detection, concurrently.Clinical significanceCNNs can provide valuable support to clinicians by automating the detection and numbering of teeth, as well as the detection of caries on bitewing radiographs. By enhancing overall performance, these algorithms have the capacity to efficiently save time and play a significant role in the assessment process.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep Learning-Based Concept Detection in vitrivr
    Rossetto, Luca
    Parian, Mahnaz Amiri
    Gasser, Ralph
    Giangreco, Ivan
    Heller, Silvan
    Schuldt, Heiko
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 616 - 621
  • [22] Deep Learning-Based Arrhythmia Detection in Electrocardiograph
    Meng, Yang
    Liang, Guoxin
    Yue, Mei
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)
  • [23] Deep learning-based detection of seedling development
    Samiei, Salma
    Rasti, Pejman
    Ly Vu, Joseph
    Buitink, Julia
    Rousseau, David
    PLANT METHODS, 2020, 16 (01)
  • [24] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [25] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [26] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967
  • [27] Deep learning-based wall crack detection
    Zheng, Zujia
    Yang, Kui
    International Journal of Wireless and Mobile Computing, 2024, 27 (02) : 118 - 124
  • [28] A Deep Learning-Based Detection of Wrinkles on Skin
    Deepa, H.
    Gowrishankar, S.
    Veena, A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 25 - 37
  • [29] A novel deep learning-based intrusion detection system for IoT DDoS security
    Hizal, Selman
    Cavusoglu, Unal
    Akgun, Devrim
    INTERNET OF THINGS, 2024, 28
  • [30] Deep learning-based detection of seedling development
    Salma Samiei
    Pejman Rasti
    Joseph Ly Vu
    Julia Buitink
    David Rousseau
    Plant Methods, 16