Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports

被引:4
|
作者
Zhu, Qingqing [1 ]
Mathai, Tejas Sudharshan [2 ]
Mukherjee, Pritam [2 ]
Peng, Yifan [3 ]
Summers, Ronald M. [2 ]
Lu, Zhiyong [1 ]
机构
[1] NLM, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[2] Natl Inst Hlth, Dept Radiol & Imaging Sci, Imaging Biomarkers & Comp Aided Diag Lab, Clin Ctr, Bethesda, MD USA
[3] Weill Cornell Med, Dept Populat Hlth Sci, New York, NY USA
基金
美国国家卫生研究院;
关键词
Chest X-Rays; Radiology reports; Longitudinal data; Report Pre-Filling; Report Generation;
D O I
10.1007/978-3-031-43904-9_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches by >= 3% on F1 score, and >= 2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 50 条
  • [41] ARE CHEST X-RAYS STILL NECESSARY
    HAIN, E
    STSTENDER, H
    BOHLIG, H
    LOCK, W
    LUKAS, W
    NEUMANN, G
    MULLER, RW
    PRAXIS UND KLINIK DER PNEUMOLOGIE, 1978, 32 (08): : 551 - 559
  • [42] INTERPRETATION OF CHILDRENS CHEST X-RAYS
    BLAIR, LG
    BRITISH JOURNAL OF RADIOLOGY, 1947, 20 (234): : 223 - 237
  • [43] HOSPITAL ADMISSION CHEST X-RAYS
    MANUEL, FR
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 1974, 110 (08) : 889 - 890
  • [44] PATIENT SELECTION FOR CHEST X-RAYS
    SHAVER, JW
    BROWN, RF
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1980, 134 (01) : 203 - 203
  • [45] CHEST X-RAYS FOR SCHOOL PERSONNEL
    不详
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1958, 168 (15): : 2080 - 2080
  • [46] Extrapulmonary Tuberculosis on Chest X-rays
    Lin, Chou-Han
    Huang, Chung-Ying
    INTERNAL MEDICINE, 2016, 55 (17) : 2517 - 2518
  • [47] ROUTINE PREOPERATIVE CHEST X-RAYS
    AINLEYWALKER, JC
    ANAESTHESIA, 1979, 34 (07) : 686 - 686
  • [48] CHEST X-RAYS AND RADIATION HAZARDS
    MOORE, ME
    LANCET, 1960, 2 (DEC10): : 1302 - 1302
  • [49] Incidental findings in chest X-rays
    Wielpuetz, M. O.
    Kauczor, H. -U.
    Weckbach, S.
    RADIOLOGE, 2017, 57 (04): : 263 - 269
  • [50] Longitudinal Change Detection on Chest X-rays Using Geometric Correlation Maps
    Oh, Dong Yul
    Kim, Jihang
    Lee, Kyong Joon
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 748 - 756