Reflected Brownian motion with drift in a wedge

被引:1
|
作者
Lakner, Peter [1 ]
Liu, Ziran [1 ]
Reed, Josh [1 ]
机构
[1] NYU, Stern Sch Business, Dept Technol Operat & Stat, New York, NY 10012 USA
关键词
Submartingale problem; Absorbed process; RBM with drift; Markov property; Feller property; DIFFUSION APPROXIMATIONS; QUEUING-NETWORKS; UNIQUENESS; EXISTENCE; DOMAINS; QUEUES; LIMITS;
D O I
10.1007/s11134-023-09893-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study reflecting Brownian motion with drift constrained to a wedge in the plane. Our first set of results provides necessary and sufficient conditions for existence and uniqueness of a solution to the corresponding submartingale problem with drift, and show that its solution possesses the Markov and Feller properties. Next, we study a version of the problem with absorption at the vertex of the wedge. In this case, we provide a condition for existence and uniqueness of a solution to the problem and some results on the probability of the vertex being reached.
引用
收藏
页码:233 / 270
页数:38
相关论文
共 50 条
  • [31] REFLECTED BROWNIAN-MOTION ON AN ORTHANT
    HARRISON, JM
    REIMAN, MI
    [J]. ANNALS OF PROBABILITY, 1981, 9 (02): : 302 - 308
  • [32] NMR survey of reflected Brownian motion
    Grebenkov, Denis S.
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (03) : 1077 - 1137
  • [33] Approximations for reflected fractional Brownian motion
    Malsagov, Artagan
    Mandjes, Michel
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [34] Brownian motion on a manifold as a limit of Brownian motions with drift
    Tarasenko, P. Yu.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (04) : 505 - 508
  • [35] Brownian motion on a manifold as a limit of Brownian motions with drift
    P. Yu. Tarasenko
    [J]. Russian Journal of Mathematical Physics, 2007, 14 : 505 - 508
  • [36] Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent
    Panzo, Hugo
    [J]. SEMINAIRE DE PROBABILITES L, 2019, 2252 : 257 - 300
  • [37] Estimation of the drift of fractional Brownian motion
    Es-Sebaiy, Khalifa
    Ouassou, Idir
    Ouknine, Youssef
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (14) : 1647 - 1653
  • [38] Minkowski dimension of Brownian motion with drift
    Charmoy, Philippe H. A.
    Peres, Yuval
    Sousi, Perla
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (02) : 153 - 176
  • [39] Estimators for the Drift of Subfractional Brownian Motion
    Shen, Guangjun
    Yan, Litan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1601 - 1612
  • [40] Some inequalities for Brownian motion with a drift
    Goldaeva, AA
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (06) : 1224 - 1225