Machine Learning for Enhancing Public Safety in Modern Cities

被引:0
|
作者
Cesario, Eugenio [1 ]
机构
[1] Univ Calabria, Comp Engn, I-87036 Arcavacata Di Rende, Italy
关键词
Machine learning; Criminal law; Spatiotemporal phenomena; Safety; Law enforcement;
D O I
10.1109/MC.2023.3342564
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning offers effective techniques to analyze crime data with spatial and temporal information, providing accurate predictions of criminal activities, with the aim to develop more effective strategies for crime prevention and improve public safety.
引用
收藏
页码:104 / 107
页数:4
相关论文
共 50 条
  • [31] MACHINE LEARNING (AI) FOR IDENTIFYING SMART CITIES
    Hammoumi, L.
    Rhinane, H.
    [J]. 8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 221 - 228
  • [32] Machine Learning Based Security for Smart Cities
    Amaizu, Gabriel Chukwunonso
    Lee, Jae-Min
    Kim, Dong-Seong
    [J]. 2022 27TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS (APCC 2022): CREATING INNOVATIVE COMMUNICATION TECHNOLOGIES FOR POST-PANDEMIC ERA, 2022, : 572 - 573
  • [33] Investigating the Impact of Public Services on Rental Prices in Chinese Super Cities Based on Interpretable Machine Learning
    Kou, Ruibing
    Long, Yifei
    Zhou, Yixin
    Liu, Weilong
    He, Xiang
    Peng, Qiao
    [J]. SUSTAINABILITY, 2024, 16 (17)
  • [34] Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities
    Zekic-Susac, Marijana
    Mitrovic, Sasa
    Has, Adela
    [J]. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 58
  • [35] Designing hotspots in the public spaces and public greenery of modern cities - selected issues
    Suchocka, Marzena
    Kimic, Kinga
    Blaszczyk, Magdalena
    Kolodynska, Natalia
    [J]. ECOLOGICAL QUESTIONS, 2019, 30 (04) : 83 - 91
  • [36] PUBLIC SAFETY AND CITIES: PERSPECTIVES FROM THE CHICAGO SCHOOL
    Gabriel Guimaraes, Claudio Alberto
    Branco, Thayara Castelo
    Santoro, Antonio Eduardo
    [J]. REVISTA DE DIREITO DA CIDADE-CITY LAW, 2021, 13 (03): : 1177 - 1219
  • [37] Modern machine learning tools for crystallography
    Bosetti, Paolo
    Ragni, Matteo
    Leoni, Matteo
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C562 - C562
  • [38] Enhancing battery pack safety against cone impact using machine learning techniques and Gaussian noise
    Zhang, Qian
    Han, Shaoyong
    Abed, Azher M.
    Basem, Ali
    El-Sharkawy, Mohamed R.
    Salah, Bashir
    Mahariq, Ibrahim
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 448 - 465
  • [39] Enhancing Spectrometer Performance with Unsupervised Machine Learning
    Harding, Benjamin D.
    Hu, Ziling
    Hiett, Ashley
    Delaglio, Frank
    Henzler-Wildman, Katherine A.
    Rienstra, Chad M.
    [J]. Journal of Physical Chemistry B, 2024, 128 (42): : 10397 - 10407
  • [40] Machine learning enhancing metaheuristics: a systematic review
    Artur Leandro da Costa Oliveira
    André Britto
    Renê Gusmão
    [J]. Soft Computing, 2023, 27 : 15971 - 15998