Distributed Data-Driven Model Predictive Control for Heterogeneous Vehicular Platoon With Uncertain Dynamics

被引:4
|
作者
Wu, Yanhong [1 ]
Zuo, Zhiqiang [1 ]
Wang, Yijing [1 ]
Han, Qiaoni [1 ]
Hu, Chuan [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Intelligent Unmanned Swarm Techno, Tianjin 300072, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicle dynamics; Predictive models; Aerodynamics; Heuristic algorithms; DC motors; Predictive control; Delays; Uncertain dynamics; heterogeneous vehicular platoon; distributed data-driven model predictive control; subspace identification; STRING STABILITY; VEHICLE; TRACKING; MPC;
D O I
10.1109/TVT.2023.3262705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To alleviate the adverse effects of heterogeneous vehicular platoon (HVP) with uncertain dynamics, a distributed data-driven model predictive control (DDMPC) strategy is proposed in this paper. A data-driven model is established with subspace identification using the input-output (I/O) vehicle trajectory. We integrate the data-driven model with the distributed model predictive control (MPC) algorithm to optimize the HVP control. Then, a DDMPC optimal scheme is designed with a target equilibrium and a pair of initial/terminal constraints. Its recursive feasibility and exponential stability are guaranteed by an I/O-to-state stability (IOSS) Lyapunov function and an optimal sum cost function. The string stability analysis of HVP also is provided. Finally, several experiments with heterogeneous vehicular platoon demonstrate the effectiveness of the proposed DDMPC strategy.
引用
下载
收藏
页码:9969 / 9983
页数:15
相关论文
共 50 条
  • [31] Data-Driven Modeling and Distributed Predictive Control of Mixed Vehicle Platoons
    Zhan, Jingyuan
    Ma, Zibo
    Zhang, Liguo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 572 - 582
  • [32] Distributed stochastic economic dispatch via model predictive control and data-driven scenario generation
    Velasquez, Miguel A.
    Quijano, Nicanor
    Cadena, Angela, I
    Shahidehpour, Mohammad
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 129
  • [33] Adaptive Robust Control for a Heterogeneous Vehicular Platoon
    Yang, Zeyu
    Huang, Jin
    Hu, Zhanyi
    Hu, Manjiang
    Meng, Tianchuang
    Zhong, Zhihua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3831 - 3836
  • [34] Data-Driven Model Predictive Control for Redundant Manipulators With Unknown Model
    Yan, Jingkun
    Jin, Long
    Hu, Bin
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, : 1 - 11
  • [35] Data-Driven Model Predictive Control for Redundant Manipulators with Unknown Model
    Yan, Jingkun
    Jin, Long
    Hu, Bin
    IEEE Transactions on Cybernetics, 2024, 54 (10): : 5901 - 5911
  • [36] Synthesis of model predictive control based on data-driven learning
    Zhou, Yuanqiang
    Li, Dewei
    Xi, Yugeng
    Gan, Zhongxue
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [37] Data-driven model predictive quality control of batch processes
    Aumi, Siam
    Corbett, Brandon
    Clarke-Pringle, Tracy
    Mhaskar, Prashant
    AICHE JOURNAL, 2013, 59 (08) : 2852 - 2861
  • [38] Data-Driven Model Predictive Control for Uncalibrated Visual Servoing
    Han, Tianjiao
    Zhu, Hongyu
    Yu, Dan
    SYMMETRY-BASEL, 2024, 16 (01):
  • [39] Robust Model Predictive Control with Data-Driven Koopman Operators
    Mamakoukas, Giorgos
    Di Cairano, Stefano
    Vinod, Abraham P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3885 - 3892
  • [40] Data-Driven Model Predictive Control With Stability and Robustness Guarantees
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1702 - 1717