Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs

被引:26
|
作者
Camara-Wilpert, Sarah [1 ]
Mayo-Munoz, David [2 ,3 ,4 ]
Russel, Jakob
Fagerlund, Robert D. [2 ,3 ,4 ,5 ]
Madsen, Jonas S.
Fineran, Peter C. [2 ,3 ,4 ,5 ]
Sorensen, Soren J.
Pinilla-Redondo, Rafael [1 ]
机构
[1] Univ Copenhagen, Microbiol Sect, Copenhagen, Denmark
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Univ Otago, Genet Otago, Dunedin, New Zealand
[4] Univ Otago, Maurice Wilkins Ctr Mol Biodiscovery, Dunedin, New Zealand
[5] Univ Otago, Bioprotect Aotearoa, Dunedin, New Zealand
关键词
PROCESSES PRE-CRRNA; SURVEILLANCE COMPLEX; VIRAL SUPPRESSORS; IN-VIVO; SEQUENCE; PROTEIN; PSEUDOMONAS; MECHANISM; CONSTRUCTION; RECOGNITION;
D O I
10.1038/s41586-023-06612-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids(1). In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity(2,3). Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units(4). We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes(5). Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications(6).
引用
收藏
页码:601 / +
页数:25
相关论文
共 50 条
  • [21] RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    Jiang, Wenyan
    Bikard, David
    Cox, David
    Zhang, Feng
    Marraffini, Luciano A.
    NATURE BIOTECHNOLOGY, 2013, 31 (03) : 233 - 239
  • [22] RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    Wenyan Jiang
    David Bikard
    David Cox
    Feng Zhang
    Luciano A Marraffini
    Nature Biotechnology, 2013, 31 : 233 - 239
  • [23] A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity
    Meeske, Alexander J.
    Jia, Ning
    Cassel, Alice K.
    Kozlova, Albina
    Liao, Jingqiu
    Wiedmann, Martin
    Patel, Dinshaw J.
    Marraffini, Luciano A.
    SCIENCE, 2020, 369 (6499) : 54 - +
  • [24] Delivery of CRISPR-Cas systems using phage-based vectors
    Fage, Clement
    Lemire, Nicolas
    Moineau, Sylvain
    CURRENT OPINION IN BIOTECHNOLOGY, 2021, 68 : 174 - 180
  • [25] Using CRISPR-Cas to Edit RNA in Living Cells: A Novel Approach to Targeting Cancer
    Lakkis, Zachary I.
    Oberbarnscheidt, Martin H.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 : S39 - S39
  • [26] Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition
    Kazlauskiene, Migle
    Tamulaitis, Gintautas
    Kostiuk, Georgij
    Venclovas, Ceslovas
    Siksnys, Virginijus
    MOLECULAR CELL, 2016, 62 (02) : 295 - 306
  • [27] Prediction of protein–protein interactions between anti-CRISPR and CRISPR-Cas using machine learning technique
    Sneha Murmu
    Himanshushekhar Chaurasia
    Sayanti Guha Majumdar
    A. R. Rao
    Anil Rai
    Sunil Archak
    Journal of Plant Biochemistry and Biotechnology, 2023, 32 : 818 - 830
  • [28] Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins
    Liu, Renmei
    Yao, Jing
    Zhou, Siyu
    Yang, Jing
    Zhang, Yaqiang
    Yang, Xiaoyan
    Li, Leshi
    Zhang, Yunbin
    Zhuang, Yingping
    Yang, Yi
    Chen, Xianjun
    NATURE PROTOCOLS, 2024, 19 (02) : 374 - 405
  • [29] A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity
    Lucia M. Malone
    Suzanne L. Warring
    Simon A. Jackson
    Carolin Warnecke
    Paul P. Gardner
    Laura F. Gumy
    Peter C. Fineran
    Nature Microbiology, 2020, 5 : 48 - 55
  • [30] Development of screening approaches of highly specific bacteriophages based on bioinformatic analysis of CRISPR-Cas structures of Corynebacterium diphtheriae systems
    Stepanenko, Lilia A.
    Dzhioev, Yuri P.
    Zlobin, Vladimir, I
    Borisenko, Andrey Yu
    Salovarova, Valentina P.
    Arefieva, Nadezhda A.
    Seminsky, Igor Zh
    Malov, Igor, V
    IZVESTIYA VUZOV-PRIKLADNAYA KHIMIYA I BIOTEKHNOLOGIYA, 2021, 11 (02): : 216 - 227