Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs

被引:26
|
作者
Camara-Wilpert, Sarah [1 ]
Mayo-Munoz, David [2 ,3 ,4 ]
Russel, Jakob
Fagerlund, Robert D. [2 ,3 ,4 ,5 ]
Madsen, Jonas S.
Fineran, Peter C. [2 ,3 ,4 ,5 ]
Sorensen, Soren J.
Pinilla-Redondo, Rafael [1 ]
机构
[1] Univ Copenhagen, Microbiol Sect, Copenhagen, Denmark
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Univ Otago, Genet Otago, Dunedin, New Zealand
[4] Univ Otago, Maurice Wilkins Ctr Mol Biodiscovery, Dunedin, New Zealand
[5] Univ Otago, Bioprotect Aotearoa, Dunedin, New Zealand
关键词
PROCESSES PRE-CRRNA; SURVEILLANCE COMPLEX; VIRAL SUPPRESSORS; IN-VIVO; SEQUENCE; PROTEIN; PSEUDOMONAS; MECHANISM; CONSTRUCTION; RECOGNITION;
D O I
10.1038/s41586-023-06612-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids(1). In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity(2,3). Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units(4). We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes(5). Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications(6).
引用
收藏
页码:601 / +
页数:25
相关论文
共 50 条
  • [1] Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs
    Sarah Camara-Wilpert
    David Mayo-Muñoz
    Jakob Russel
    Robert D. Fagerlund
    Jonas S. Madsen
    Peter C. Fineran
    Søren J. Sørensen
    Rafael Pinilla-Redondo
    Nature, 2023, 623 : 601 - 607
  • [2] RNA-based anti-CRISPRs
    Song, Yiyun
    NATURE CHEMICAL BIOLOGY, 2023, 19 (12) : 1433 - 1433
  • [3] RNA-based anti-CRISPRs
    Yiyun Song
    Nature Chemical Biology, 2023, 19 : 1433 - 1433
  • [4] Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems
    Fei Zhang
    Guoxu Song
    Yong Tian
    Animal Models and Experimental Medicine, 2019, 2 (02) : 69 - 75
  • [5] Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems
    Zhang, Fei
    Song, Guoxu
    Tian, Yong
    ANIMAL MODELS AND EXPERIMENTAL MEDICINE, 2019, 2 (02) : 69 - 75
  • [6] Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems
    Davidson, Alan R.
    Lu, Wang-Ting
    Stanley, Sabrina Y.
    Wang, Jingrui
    Mejdani, Marios
    Trost, Chantel N.
    Hicks, Brian T.
    Lee, Jooyoung
    Sontheimer, Erik J.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 89, 2020, 89 : 309 - 332
  • [7] Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems
    Hwana, Sungwon
    Maxwell, Karen L.
    CRISPR JOURNAL, 2019, 2 (01): : 23 - 30
  • [8] Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors
    Li, Yuping
    Bondy-Denomy, Joseph
    CELL HOST & MICROBE, 2021, 29 (05) : 704 - 714
  • [9] CRISPR-Cas: Evolution of an RNA-based adaptive immunity system in prokaryotes
    Koonin, Eugene V.
    Makarova, Kira S.
    RNA BIOLOGY, 2013, 10 (05) : 679 - 686
  • [10] The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors
    Belato, Helen B.
    Lisi, George P.
    BIOMOLECULES, 2023, 13 (02)