The Multiplier and Cohomology of Lie Superalgebras

被引:0
|
作者
Liu, Yang [1 ]
Liu, Wende [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R China
关键词
multiplier; cohomology; 5-sequence; SCHUR MULTIPLIER; ALGEBRAS; COVERS; DIMENSION;
D O I
10.1142/S1005386723000317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that L is a Lie superalgebra over a field F of characteristic different from 2 and 3. In this paper, the so-called 5-sequence of cohomology for a central extension of L is constructed and is proved to be exact. Moreover, the multiplier of L is proved to be isomorphic to the second cohomology group with coefficients in the trivial module of L. Finally, an upper bound of the superdimension of the second cohomology group is given in the situation when L is nilpotent and finite-dimensional.
引用
下载
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Cohomology and Support Varieties for Restricted Lie Superalgebras
    Irfan Bagci
    Algebras and Representation Theory, 2014, 17 : 213 - 225
  • [22] Computation of cohomology of Lie superalgebras of vector fields
    Kornyak, VV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (02): : 397 - 413
  • [23] Cohomology and support varieties for Lie superalgebras II
    Boe, Brian D.
    Kujawa, Jonathan R.
    Nakano, Daniel K.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 : 19 - 44
  • [24] Structure and cohomology of 3-Lie-Rinehart superalgebras
    Ben Hassine, Abdelkader
    Chtioui, Taoufik
    Mabrouk, Sami
    Silvestrov, Sergei
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4883 - 4904
  • [26] On capability and the Schur multiplier of some nilpotent Lie superalgebras
    Padhan, Rudra Narayan
    Nayak, Saudamini
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1467 - 1478
  • [27] SECOND COHOMOLOGY OF LIE RINGS AND THE SCHUR MULTIPLIER
    Horn, M.
    Zandi, S.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2014, 3 (02) : 9 - 20
  • [28] LOCAL GROTHENDIECK COHOMOLOGY AND INDUCED REPRESENTATIONS OF LIE-SUPERALGEBRAS
    CHEMLA, S
    MATHEMATISCHE ANNALEN, 1993, 297 (02) : 371 - 382
  • [29] Cohomology and Support Varieties for Lie Superalgebras of Type W(n)
    Bagci, Irfan
    Kujawa, Jonathan R.
    Nakano, Daniel K.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [30] Cohomology of Lie Superalgebras: Forms, Integral Forms and Coset Superspaces
    Cremonini, C. A.
    Grassi, P. A.
    Noja, S.
    JOURNAL OF LIE THEORY, 2023, 33 (02) : 567 - 608