Low order modeling of dynamic stall using vortex particle method and dynamic mode decomposition

被引:2
|
作者
Nguyen, Van Duc [1 ]
Duong, Viet Dung [1 ]
Trinh, Minh Hoang [1 ]
Nguyen, Hoang Quan [1 ]
Nguyen, Dang Thai Son [1 ]
机构
[1] Vietnam Natl Univ, Univ Engn & Technol, Sch Aerosp Engn, Hanoi, Vietnam
关键词
Low-order modeling; dynamic mode decomposition; vortex particle method; dynamic stall; viscous flow; HIGH-RESOLUTION SIMULATIONS; AXIAL COMPRESSOR; FLOW; OSCILLATIONS; PERFORMANCE; CYLINDERS; ALGORITHM; VORTICES; AIRFOIL; WAKE;
D O I
10.1177/17568293221147923
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Low order modelings are performed in this paper, including iterative Brinkman penalized vortex method (IBVM) and data-driven dynamic mode decomposition (DMD) for dynamic stall study of symmetric airfoil. The data are extracted from IBVM as input for flow field reconstruction using combinations of DMD dominant modes, representing extracted flow features. The primary mode together with its harmonics, and the mean mode are termed to be dominant for the airfoil wake duplication at fixed angles of attack ( alpha) ranging from 20 & LCIRC; to 90 & LCIRC;. For the dynamic stall duplication, at small and large pitching amplitudes, the nearfield and farfield vorticty contours from the DMD generally agree well with those from the IBVM. In addition, the lift coefficient from the DMD collapses well with that from the IBVM and the experiment.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Evaluation of dynamic speckle activity using the empirical mode decomposition method
    Federico, Alejandro
    Kaufmann, Guillermo H.
    OPTICS COMMUNICATIONS, 2006, 267 (02) : 287 - 294
  • [42] Assessment of ZWD field predictions using the dynamic mode decomposition method
    Dehvari, Masoud
    Farzaneh, Saeed
    Forootan, Ehsan
    GPS SOLUTIONS, 2024, 28 (03)
  • [43] Efficient and Robust Background Modeling with Dynamic Mode Decomposition
    Tim Krake
    Andrés Bruhn
    Bernhard Eberhardt
    Daniel Weiskopf
    Journal of Mathematical Imaging and Vision, 2022, 64 : 364 - 378
  • [44] Efficient and Robust Background Modeling with Dynamic Mode Decomposition
    Krake, Tim
    Bruhn, Andres
    Eberhardt, Bernhard
    Weiskopf, Daniel
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (04) : 364 - 378
  • [45] Modeling intercellular calcium dynamics in an epithelial organ using Dynamic Mode Decomposition
    Torghabeh, Ramezan Paravi
    Zartman, Jeremiah J.
    IFAC PAPERSONLINE, 2018, 51 (19): : 120 - 123
  • [46] Modeling Dynamic Patterns from COVID-19 Data Using Randomized Dynamic Mode Decomposition in Predictive Mode and ARIMA
    Bistrian, D. A.
    Dimitriu, G.
    Navon, I. M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [47] The effects of turbulence modeling on dynamic stall
    Baldan, Giacomo
    Manara, Francesco
    Frassoldati, Gregorio
    Guardone, Alberto
    ACTA MECHANICA, 2025, 236 (02) : 1411 - 1427
  • [48] Dynamic mode decomposition of rotorcraft blade tip vortex in hovering state
    Kong, Wenjie
    Du, Hai
    Zhang, Qinlin
    Li, Qixuan
    Lv, Xinyue
    Zhou, Lianbin
    Zhang, Weiguo
    AIP ADVANCES, 2020, 10 (03)
  • [49] Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain
    Zhang, Yanming
    Chen, Menglin L. N.
    Jiang, Li Jun
    OPTICS EXPRESS, 2019, 27 (20) : 27702 - 27711
  • [50] Reduced Order Modeling of Once-through Steam Generator Based on Dynamic Mode Decomposition
    Xu Y.
    Peng M.
    Xia G.
    Hedongli Gongcheng/Nuclear Power Engineering, 2024, 45 (03): : 85 - 94