A Machine Learning Method for Automated Description and Workflow Analysis of First Trimester Ultrasound Scans

被引:9
|
作者
Yasrab, Robail [1 ]
Fu, Zeyu [1 ]
Zhao, He [1 ]
Lee, Lok Hin [1 ]
Sharma, Harshita [1 ]
Drukker, Lior [2 ,3 ]
Papageorgiou, Aris T. [1 ,2 ]
Noble, J. Alison
机构
[1] Univ Oxford, Inst Biomed Engn, Oxford OX3 7DQ, England
[2] Univ Oxford, Dept Womens & Reprod Hlth, Oxford OX3 7DQ, England
[3] Tel Aviv Univ, Sackler Fac Med, Rabin Med Ctr, IL-6997801 Tel Aviv, Israel
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Ultrasonic imaging; Streaming media; Standards; Annotations; Task analysis; Pregnancy; Ultrasonic variables measurement; First trimester; ultrasound; spatio-temporal analysis; video classification; clinical workflow; FETAL STRUCTURAL ANOMALIES; IMAGE SEGMENTATION;
D O I
10.1109/TMI.2022.3226274
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Obstetric ultrasound assessment of fetal anatomy in the first trimester of pregnancy is one of the less explored fields in obstetric sonography because of the paucity of guidelines on anatomical screening and availability of data. This paper, for the first time, examines imaging proficiency and practices of first trimester ultrasound scanning through analysis of full-length ultrasound video scans. Findings from this study provide insights to inform the development of more effective user-machine interfaces, of targeted assistive technologies, as well as improvements in workflow protocols for first trimester scanning. Specifically, this paper presents an automated framework to model operator clinical workflow from full-length routine first-trimester fetal ultrasound scan videos. The 2D+t convolutional neural network-based architecture proposed for video annotation incorporates transfer learning and spatio-temporal (2D+t) modelling to automatically partition an ultrasound video into semantically meaningful temporal segments based on the fetal anatomy detected in the video. The model results in a cross-validation A1 accuracy of 96.10% , F1=0.95 , precision =0.94 and recall =0.95 . Automated semantic partitioning of unlabelled video scans (n=250) achieves a high correlation with expert annotations ( ? = 0.95, p=0.06 ). Clinical workflow patterns, operator skill and its variability can be derived from the resulting representation using the detected anatomy labels, order, and distribution. It is shown that nuchal translucency (NT) is the toughest standard plane to acquire and most operators struggle to localize high-quality frames. Furthermore, it is found that newly qualified operators spend 25.56% more time on key biometry tasks than experienced operators.
引用
收藏
页码:1301 / 1313
页数:13
相关论文
共 50 条
  • [31] First trimester pregnancy ultrasound findings as a function of method of conception in an infertile population
    von Versen-Hoeynck, Frauke
    Petersen, Jenna S.
    Chi, Yueh-Yun
    Liu, Jing
    Baker, Valerie L.
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2018, 35 (05) : 863 - 870
  • [32] First trimester pregnancy ultrasound findings as a function of method of conception in an infertile population
    Frauke von Versen-Höynck
    Jenna S. Petersen
    Yueh-Yun Chi
    Jing Liu
    Valerie L. Baker
    Journal of Assisted Reproduction and Genetics, 2018, 35 : 863 - 870
  • [33] Tele-obstetric ultrasound: analysis of first-trimester ultrasound images transmitted in realtime
    Ferlin, Rejane Maria
    Vaz-Oliani, Denise Mos
    Ferreira, Adilson Cunha
    Tristao, Edson Gomes
    Oliani, Antonio Helio
    JOURNAL OF TELEMEDICINE AND TELECARE, 2012, 18 (01) : 54 - 58
  • [34] Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration
    Mohammad R. Arbabshirani
    Brandon K. Fornwalt
    Gino J. Mongelluzzo
    Jonathan D. Suever
    Brandon D. Geise
    Aalpen A. Patel
    Gregory J. Moore
    npj Digital Medicine, 1
  • [35] Automated ASPECTS Scoring of CT Scans for Acute Ischemic Stroke Patients Using Machine Learning
    Kuang, Hulin
    Teleg, Ericka
    Najm, Mohamed
    Wilson, Alexis T.
    Sohn, Sung I.
    Goyal, Mayank
    Hill, Michael D.
    Demchuk, Andrew
    Menon, Bijoy K.
    Qiu, Wu
    STROKE, 2018, 49
  • [36] Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning
    Kuang, H.
    Najm, M.
    Chakraborty, D.
    Maraj, N.
    Sohn, S. I.
    Goyal, M.
    Hill, M. D.
    Demchuk, A. M.
    Menon, B. K.
    Qiu, W.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) : 33 - 38
  • [37] Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration
    Arbabshirani, Mohammad R.
    Fornwalt, Brandon K.
    Mongelluzzo, Gino J.
    Suever, Jonathan D.
    Geise, Brandon D.
    Patel, Aalpen A.
    Moore, Gregory J.
    NPJ DIGITAL MEDICINE, 2018, 1
  • [38] Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning
    Looney, Padraig
    Stevenson, Gordon N.
    Nicolaides, Kypros H.
    Plasencia, Walter
    Molloholli, Malid
    Natsis, Stavros
    Collins, Sally L.
    JCI INSIGHT, 2018, 3 (11)
  • [39] CatFlow: An Automated Workflow for Training Machine Learning Potentials to Compute Free Energies in Dynamic Catalysis
    Liu, Yun-Pei
    Fan, Qi-Yuan
    Gong, Fu-Qiang
    Cheng, Jun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 129 (02): : 1089 - 1102
  • [40] A fully automated machine-learning-based workflow for radiation treatment planning in prostate cancer
    Bolten, Jan-Hendrik
    Neugebauer, David
    Grott, Christoph
    Weykamp, Fabian
    Ristau, Jonas
    Mende, Stephan
    Sandrini, Elisabetta
    Meixner, Eva
    Aznar, Victoria Navarro
    Tonndorf-Martini, Eric
    Schubert, Kai
    Steidel, Christiane
    Wessel, Lars
    Debus, Juergen
    Liermann, Jakob
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2025, 52