Theory-guided development of homogeneous catalysts for the reduction of CO2 to formate, formaldehyde, and methanol derivatives

被引:14
|
作者
Cramer, Hanna H. [1 ]
Das, Shubhajit [2 ]
Wodrich, Matthew D. [2 ,3 ]
Corminboeuf, Clemence [2 ,3 ,4 ]
Werle, Christophe [1 ,5 ]
Leitner, Walter [1 ,6 ]
机构
[1] Max Planck Inst Chem Energy Convers, Stiftstr 34-36, D-45470 Mulheim, Germany
[2] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, Lab Computat Mol Design, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne EPFL, Natl Ctr Competence Res Catalysis NCCR Catalysis, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne EPFL, Natl Ctr Computat Design & Discovery Novel Mat MAR, CH-1015 Lausanne, Switzerland
[5] Ruhr Univ Bochum, Univ Str 150, D-44801 Bochum, Germany
[6] Rhein Westfal TH Aachen, Inst Tech & Makromol Chem ITMC, Worringer Weg 2, D-52074 Aachen, Germany
基金
瑞士国家科学基金会;
关键词
CARBON-DIOXIDE REDUCTION; SCALING RELATIONSHIPS; OXYGEN REDUCTION; VOLCANO PLOTS; FORMIC-ACID; HYDROGENATION; DESIGN; CONVERSION; HYDROSILYLATION; HYDROBORATION;
D O I
10.1039/d2sc06793e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stepwise catalytic reduction of carbon dioxide (CO2) to formic acid, formaldehyde, and methanol opens non-fossil pathways to important platform chemicals. The present article aims at identifying molecular control parameters to steer the selectivity to the three distinct reduction levels using organometallic catalysts of earth-abundant first-row metals. A linear scaling relationship was developed to map the intrinsic reactivity of 3d transition metal pincer complexes to their activity and selectivity in CO2 hydrosilylation. The hydride affinity of the catalysts was used as a descriptor to predict activity/selectivity trends in a composite volcano picture, and the outstanding properties of cobalt complexes bearing bis(phosphino)triazine PNP-type pincer ligands to reach the three reduction levels selectively under different reaction conditions could thus be rationalized. The implications of the composite volcano picture were successfully experimentally validated with selected catalysts, and the challenging intermediate level of formaldehyde could be accessed in over 80% yield with the cobalt complex 6. The results underpin the potential of tandem computational-experimental approaches to propel catalyst design for CO2-based chemical transformations.
引用
收藏
页码:2799 / 2807
页数:10
相关论文
共 50 条
  • [41] Molecular catalysts for CO2 reduction to CO
    Zhanaidarova, Almagul
    Kubiak, Clifford
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [42] Progress and perspectives for electrochemical CO2 reduction to formate
    Zou, Jinshuo
    Liang, Gemeng
    Lee, Chong-Yong
    Wallace, Gordon G.
    MATERIALS TODAY ENERGY, 2023, 38
  • [43] Managing reactivity of hydrides in CO2 reduction to formate
    Berben, Louise
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [44] Photocatalytic Reduction of CO2 to CO and Formate: Do Reaction Conditions or Ruthenium Catalysts Control Product Selectivity?
    Rodrigues, Roberta R.
    Boudreaux, Chance M.
    Papish, Elizabeth T.
    Delcamp, Jared H.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 37 - 46
  • [45] Cascade Catalysis for the Homogeneous Hydrogenation of CO2 to Methanol
    Huff, Chelsea A.
    Sanford, Melanie S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) : 18122 - 18125
  • [46] Nanoporous bismuth for the electrocatalytic reduction of CO2 to formate
    Wang, Xiaoyan
    Wang, Zhiyong
    Jin, Xianbo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (35) : 19195 - 19201
  • [47] Efficient homogeneous catalysis in the reduction of CO2 to CO
    Laitar, DS
    Müller, P
    Sadighi, JP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (49) : 17196 - 17197
  • [48] Molecular catalysts for the reduction of CO2
    Appel, Aaron M.
    Linehan, John C.
    Boro, Brian J.
    Galan, Brandon R.
    DuBois, Daniel L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [49] REDUCTION OF CO TO METHANOL BY EVERITTS SALT USING PENTACYANOFERRATE(II) OR PENTACHLOROCHROMATE(III) AND METHANOL AS HOMOGENEOUS CATALYSTS
    OGURA, K
    KANEKO, M
    JOURNAL OF MOLECULAR CATALYSIS, 1985, 31 (01): : 49 - 56
  • [50] Homogeneous catalytic reduction of CO2 with hydrosilanes
    Fernandez-Alvarez, Francisco J.
    Aitani, Abdullah M.
    Oro, Luis A.
    CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (03) : 611 - 624