A modified global error minimization method for solving nonlinear Duffing-harmonic oscillators

被引:4
|
作者
Ismail, Gamal M. [1 ,2 ]
El-Moshneb, Maha M. [1 ]
Zayed, Mohra [3 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
[2] Islamic Univ Madinah, Fac Sci, Dept Math, Madinah 42351, Saudi Arabia
[3] King Khalid Univ, Coll Sci, Math Dept, Abha, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
global error minimization method; Duffing-harmonic oscillator; analytical and approximate solutions; periodic solution; numerical solution; HAMILTONIAN APPROACH;
D O I
10.3934/math.2023023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a third-order approximate solution of strongly nonlinear Duffing-harmonic oscillators is obtained by extending and improving an analytical technique called the global error minimization method (GEMM). We have made a comparison between our results, those obtained from the other analytical methods and the numerical solution. Consequently, we notice a better agreement with the numerical solution than other known analytical methods. The results are valid for both small and large oscillation amplitude. The obtained results demonstrate that the present method can be easily extended to strongly nonlinear problems, as indicated in the presented applications.
引用
收藏
页码:484 / 500
页数:17
相关论文
共 50 条
  • [21] The modified Lindstedt-Poincare method for solving quadratic nonlinear oscillators
    Yeasmin, Ismot A.
    Rahman, M. S.
    Alam, M. S.
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (03) : 1351 - 1362
  • [22] Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators
    Belendez, A.
    Gimeno, E.
    Alvarez, M. L.
    Mendez, D. I.
    Hernandez, A.
    [J]. PHYSICS LETTERS A, 2008, 372 (39) : 6047 - 6052
  • [23] Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method
    Belendez, A.
    Gimeno, E.
    Alvarez, M. L.
    Yebra, M. S.
    Mendez, D. I.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (07) : 1497 - 1511
  • [24] Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators
    Ju, Peijun
    Xue, Xin
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (24) : 6144 - 6152
  • [25] Generalization of the modified Lindstedt-Poincare method for solving some strong nonlinear oscillators
    Alam, M. S.
    Yeasmin, I. A.
    Ahamed, Md S.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2019, 10 (01) : 195 - 201
  • [26] The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators
    Guo, Zhongjin
    Leung, A. Y. T.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) : 3163 - 3169
  • [27] Solution of Cubic-Quintic Duffing Oscillators using Harmonic Balance Method
    Hosen, M. A.
    Chowdhury, M. S. H.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 181 - 192
  • [28] Gamma function method for the nonlinear cubic-quintic Duffing oscillators
    Wang, Kang-Jia
    Wang, Guo-Dong
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (01) : 216 - 222
  • [29] A new method based on the harmonic balance method for nonlinear oscillators
    Chen, Y. M.
    Liu, J. K.
    [J]. PHYSICS LETTERS A, 2007, 368 (05) : 371 - 378
  • [30] A modified harmonic balance method to obtain higher-order approximations to strongly nonlinear oscillators
    Hosen, Md Alal
    Chowdhury, M. S. H.
    Ismail, G. M.
    Yildirim, A.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (07) : 1325 - 1345