Pan-Arctic plankton community structure and its global connectivity

被引:5
|
作者
Ibarbalz, Federico M. [1 ,2 ,3 ,4 ,5 ]
Henry, Nicolas [6 ,7 ,8 ]
Mahe, Frederic [9 ]
Ardyna, Mathieu [10 ,11 ,12 ,13 ]
Zingone, Adriana [14 ]
Scalco, Eleonora [14 ]
Lovejoy, Connie [15 ,16 ]
Lombard, Fabien [7 ,13 ]
Jaillon, Olivier [6 ,7 ,17 ]
Iudicone, Daniele [14 ]
Malviya, Shruti [1 ]
Sullivan, Matthew B. [18 ,19 ]
Chaffron, Samuel [7 ,20 ]
Karsenti, Eric [7 ,21 ]
Babin, Marcel [11 ]
Boss, Emmanuel [22 ]
Wincker, Patrick [7 ]
Zinger, Lucie [1 ,23 ]
de Vargas, Colomban [7 ]
Bowler, Chris [1 ,7 ]
Karp-Boss, Lee [22 ]
机构
[1] PSL Univ Paris, Inst Biol Ecole normale Super IBENS, Ecole normale Super, CNRS,INSERM, Paris, France
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, Argentina
[3] Univ Buenos Aires, Ctr Invest Mar & Atmosfera CIMA, CONICET, Buenos Aires, Argentina
[4] UBA, Inst Franco Argentino Estudio Clima & Impactos, CNRS, IRD,CONICET,IRL 3351 IFAECI, RA-3351 Buenos Aires, Argentina
[5] Inst Univ Seguridad Maritima IUSM, Prefectura Naval Argentina, Buenos Aires, Argentina
[6] Sorbonne Univ, Stn Biol Roscoff, CNRS, UMR 7144,AD2M, Roscoff, France
[7] Res Federat Study Global Ocean Syst Ecol & Evolut, Tara Oceans GOSEE, FR2022, 3 Rue Michel Ange, Paris, France
[8] Sorbonne Univ, Stn Biol Roscoff, FR2424, ABiMS Bioinformat Platform,CNRS, Roscoff, France
[9] CIRAD, UMR PHIM, Montpellier, France
[10] Univ Montpellier, PHIM Plant Hlth Inst, Inst Agro, INRAE,CIRAD,IRD, Montpellier, France
[11] Univ Laval, Takuvik Joint Int Lab UMI3376 Univ Laval Canada CN, Quebec City, PQ, Canada
[12] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA
[13] Sorbonne Univ, CNRS, Lab Oceanog Villefranche, LOV, Paris, France
[14] Stn Zool Anton Dohrn, Villa Comunale, I-80121 Naples, Italy
[15] Univ Laval, Dept Biol, Inst Biol Integrat & Syst, Quebec City, PQ, Canada
[16] Univ Laval, Inst Biol Integrat & Syst, Quebec City, PQ, Canada
[17] Univ Evry, Univ Paris Saclay, Inst Biol Francois Jacob, Genom Metab,Genoscop,CNRS,Commissariata Energie At, Evry, France
[18] Ohio State Univ, Ctr Microbiome Sci, Byrd Polar & Climate Res Ctr, Dept Microbiol, Columbus, OH USA
[19] Ohio State Univ, Ctr Microbiome Sci, Byrd Polar & Climate Res Ctr, Dept Civil Environm & Geodet Engn, Columbus, OH USA
[20] Nantes Univ, CNRS, LS2N, UMR 6004, Nantes, France
[21] European Mol Biol Lab, Directors Res, Heidelberg, Germany
[22] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA
[23] Nat Biodivers Ctr, Leiden, Netherlands
来源
ELEMENTA-SCIENCE OF THE ANTHROPOCENE | 2023年 / 11卷 / 01期
基金
欧洲研究理事会;
关键词
Marine protists; Unicellular; Phytoplankton; Global change; Advection; Environmental filtering; SPECIES RICHNESS; SEA-ICE; OCEAN; BIODIVERSITY; BIOGEOGRAPHY; DIVERSITY; INSIGHTS; TRENDS; INFLOW; WATER;
D O I
10.1525/elementa.2022.00060
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Arctic Ocean (AO) is being rapidly transformed by global warming, but its biodiversity remains understudied for many planktonic organisms, in particular for unicellular eukaryotes that play pivotal roles in marine food webs and biogeochemical cycles. The aim of this study was to characterize the biogeographic ranges of species that comprise the contemporary pool of unicellular eukaryotes in the AO as a first step toward understanding mechanisms that structure these communities and identifying potential target species for monitoring. Leveraging the Tara Oceans DNA metabarcoding data, we mapped the global distributions of operational taxonomic units (OTUs) found on Arctic shelves into five biogeographic categories, identified biogeographic indicators, and inferred the degree to which AO communities of unicellular eukaryotes share members with assemblages from lower latitudes. Arctic/Polar indicator OTUs, as well as some globally ubiquitous OTUs, dominated the detection and abundance of DNA reads in the Arctic samples. OTUs detected only in Arctic samples (Arctic -exclusives) showed restricted distribution with relatively low abundances, accounting for 10-16% of the total Arctic OTU pool. OTUs with high abundances in tropical and/or temperate latitudes (non -Polar indicators) were also found in the AO but mainly at its periphery. We observed a large change in community taxonomic composition across the Atlantic -Arctic continuum, supporting the idea that advection and environmental filtering are important processes that shape plankton assemblages in the AO. Altogether, this study highlights the connectivity between the AO and other oceans, and provides a framework for monitoring and assessing future changes in this vulnerable ecosystem.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Relationship Between Wintertime Leads and Low Clouds in the Pan-Arctic
    Li, Xia
    Krueger, Steven K.
    Strong, Courtenay
    Mace, Gerald G.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (18)
  • [42] Organic matter remineralization in marine sediments: A Pan-Arctic synthesis
    Bourgeois, Solveig
    Archambault, Philippe
    Witte, Ursula
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2017, 31 (01) : 190 - 213
  • [43] Pan-Arctic ocean wind and wave data by spaceborne SAR
    Li, Xiao-Ming
    Wu, Ke
    Huang, Bingqing
    [J]. BIG EARTH DATA, 2022, 6 (02) : 144 - 163
  • [44] Towards a unifying pan-arctic perspective: A conceptual modelling toolkit
    Wassmann, P.
    Carmack, E. C.
    Bluhm, B. A.
    Duarte, C. M.
    Berge, J.
    Brown, K.
    Grebmeier, J. M.
    Holding, J.
    Kosobokova, K.
    Kwok, R.
    Matrai, P.
    Agusti, S.
    Babin, M.
    Bhatt, U.
    Eicken, H.
    Polyakov, I
    Rysgaard, S.
    Huntington, H. P.
    [J]. PROGRESS IN OCEANOGRAPHY, 2020, 189
  • [45] An ecologically sound and participatory monitoring network for pan-Arctic seabirds
    Clairbaux, Manon
    Ronka, Mia
    Anker-Nilssen, Tycho
    Artukhin, Yuri
    Danielsen, Johannis
    Gavrilo, Maria
    Gilchrist, Grant
    Hansen, Erpur Snaer
    Hedd, April
    Kaler, Robert
    Kuletz, Kathy
    Olsen, Bergur
    Mallory, Mark L.
    Merkel, Flemming Ravn
    Strom, Hallvard
    Fort, Jerome
    Gremillet, David
    [J]. CONSERVATION BIOLOGY, 2024,
  • [46] Effect of snow cover on pan-Arctic permafrost thermal regimes
    Hotaek Park
    Alexander N. Fedorov
    Mikhail N. Zheleznyak
    Pavel Y. Konstantinov
    John E. Walsh
    [J]. Climate Dynamics, 2015, 44 : 2873 - 2895
  • [47] Integration and development of energy and information network in the Pan-Arctic region
    Xiaoxia Wei
    Jinyu Xiao
    Zhe Wang
    Zhichun Wang
    Yun Tian
    [J]. Global Energy Interconnection, 2019, 2 (06) : 505 - 513
  • [48] Pan-Arctic diel vertical migration during the polar night
    Hobbs, L.
    Cottier, F. R.
    Las, K. S.
    Berge, J.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2018, 605 : 61 - 72
  • [49] Effect of snow cover on pan-Arctic permafrost thermal regimes
    Park, Hotaek
    Fedorov, Alexander N.
    Zheleznyak, Mikhail N.
    Konstantinov, Pavel Y.
    Walsh, John E.
    [J]. CLIMATE DYNAMICS, 2015, 44 (9-10) : 2873 - 2895
  • [50] Satellite assessment of land surface evapotranspiration for the pan-Arctic domain
    Mu, Qiaozhen
    Jones, Lucas A.
    Kimball, John S.
    McDonald, Kyle C.
    Running, Steven W.
    [J]. WATER RESOURCES RESEARCH, 2009, 45