Quality Assessment of FY-4A/AGRI Official Sea Surface Temperature Product

被引:1
|
作者
Meng, Xiangchen [1 ,2 ]
Cheng, Jie [3 ]
Guo, Hao [1 ,2 ]
Yao, Beibei [4 ]
机构
[1] Qufu Normal Univ, Sch Geog & Tourism, Rizhao 276825, Shandong, Peoples R China
[2] Qufu Normal Univ, Rizhao Key Lab Terr Spatial Planning & Ecol Constr, Rizhao 276825, Shandong, Peoples R China
[3] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China
[4] Qufu Normal Univ, Sch Marxism, Rizhao 276826, Shandong, Peoples R China
关键词
Fengyun-4A (FY-4A)/Advanced Geostationary Radiation Imager (AGRI); in situ SST Quality monitor (iQUAM); sea surface temperature (SST); INTER-COMPARISONS; ALGORITHMS;
D O I
10.1109/LGRS.2024.3350585
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sea surface temperature (SST) is an important variable in climate and weather research. We utilize two SST datasets to analyze the performance of the Fengyun-4A (FY-4A)/Advanced Geostationary Radiation Imager (AGRI) SST product retrieved from the nonlinear split-window algorithm. Validation results with the in situ SST Quality monitor (iQuam) (version 2.1) show that the overall bias and root mean square error (RMSE) are -0.38 and 1.04 K, respectively, meeting the demand for numerical weather prediction. There is a good agreement between the AGRI SST and the Advanced Himawari Imager (AHI) SST (version 2.0), with an overall bias of 0.09 and an RMSE of 0.95 K. The significant accuracy decreases in AGRI SST since August 2020 could be attributed to an updated operation calibration. This letter will benefit the scientific disciplines that require an SST as input by highlighting the accuracy and uncertainty of the AGRI SST product.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] A New Geostationary Satellite-Based Snow Cover Recognition Method for FY-4A AGRI
    Qiao, Haiwei
    Zhang, Ping
    Li, Zhen
    Liu, Chang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11372 - 11385
  • [32] 基于FY-4A/AGRI的多维动态混合成像方法研究
    鄢俊洁
    瞿建华
    张芳芳
    郭雪星
    王燕婷
    气象与环境学报, 2022, 38 (06) : 98 - 105
  • [33] Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
    Xia, Jinyi
    Guan, Li
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (22) : 6697 - 6706
  • [34] 基于朴素贝叶斯的FY-4A/AGRI云检测方法
    郭雪星
    瞿建华
    叶凌梦
    韩旻
    史墨杰
    应用气象学报, 2023, 34 (03) : 282 - 294
  • [35] 基于FY-4A AGRI观测用随机森林算法反演地面雨量
    官莉
    钟宇璐
    地球物理学进展, 2023, 38 (05) : 1931 - 1938
  • [36] Error Model for the Assimilation of All-Sky FY-4A/AGRI Infrared Radiance Observations
    Pu, Dongchuan
    Wu, Yali
    SENSORS, 2024, 24 (08)
  • [37] Assessing Radiometric Calibration of FY-4A/AGRI Thermal Infrared Channels Using CrIS and IASI
    He, Xingwei
    Xu, Na
    Feng, Xiaohu
    Hu, Xiuqing
    Xu, Hanlie
    Peng, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] FY-4A/AGRI Aerosol Optical Depth Retrieval Capability Test and Validation Based on NNAeroG
    Ding, Haonan
    Zhao, Limin
    Liu, Shanwei
    Chen, Xingfeng
    de Leeuw, Gerrit
    Wang, Fu
    Zheng, Fengjie
    Zhang, Yuhuan
    Liu, Jun
    Li, Jiaguo
    She, Lu
    Si, Yidan
    Gu, Xingfa
    REMOTE SENSING, 2022, 14 (21)
  • [39] Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest
    Zhang, Xuewei
    Xu, Dongmei
    Li, Xin
    Shen, Feifei
    REMOTE SENSING, 2023, 15 (07)
  • [40] Reconstruction of Hourly FY-4A AGRI Land Surface Temperature under Cloud-Covered Conditions Using a Hybrid Method Combining Spatial and Temporal Information
    Li, Yuxin
    Zhu, Shanyou
    Zhang, Guixin
    Xu, Wenjie
    Jiang, Wenhao
    Xu, Yongming
    REMOTE SENSING, 2024, 16 (10)