A Sharp Gradient Estimate and W2,q Regularity for the Prescribed Mean Curvature Equation in the Lorentz-Minkowski Space

被引:0
|
作者
Bonheure, Denis [1 ]
Iacopetti, Alessandro [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine CP214 Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
RADIAL GRAPHS; HYPERSURFACES; SURFACES; FOUNDATIONS;
D O I
10.1007/s00205-023-01910-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the prescribed mean curvature equation for entire spacelike hypersurfaces in the Lorentz-Minkowski space, namely -div(del u/root 1-|del u|(2)) =rho in R-N , where N (sic) 3. We first prove a new gradient estimate for classical solutions with smooth data rho. As a consequence, we obtain that the unique weak solution of the equation satisfying a homogeneous boundary condition at infinity is locally of class W-2,W-q and strictly spacelike in R-N, provided that rho is an element of L-q (R-N) boolean AND L-m(R-N) with q > N and m is an element of [1, 2N/N+2].
引用
收藏
页数:44
相关论文
共 44 条
  • [31] Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space
    Corsato, Chiara
    Obersnel, Franco
    Omari, Pierpaolo
    Rivetti, Sabrina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 227 - 239
  • [32] ENTIRE ZERO-MEAN CURVATURE GRAPHS OF MIXED TYPE IN LORENTZ-MINKOWSKI 3-SPACE
    Fujimori, Shoichi
    Kawakami, Yu
    Kokubu, Masatoshi
    Rossman, Wayne
    Umehara, Masaaki
    Yamada, Kotaro
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04): : 801 - 837
  • [33] Embedded Triply Periodic Zero Mean Curvature Surfaces of Mixed Type in Lorentz-Minkowski 3-Space
    Fujimori, Shoichi
    Rossman, Wayne
    Umehara, Masaaki
    Yamada, Kotaro
    Yang, Seong-Deog
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 189 - 207
  • [34] Ruled surfaces as translating solitons of the inverse mean curvature flow in the three-dimensional Lorentz-Minkowski space
    Neto, Gregorio Silva
    Silva, Vanessa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [35] THE INTERIOR GRADIENT ESTIMATE OF PRESCRIBED HESSIAN QUOTIENT CURVATURE EQUATION IN THE HYPERBOLIC SPACE
    Mei, Xinqun
    Zhou, Jundong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1187 - 1198
  • [36] AN ANISOTROPIC INVERSE MEAN CURVATURE FLOW FOR SPACELIKE GRAPHIC HYPERSURFACES WITH BOUNDARY IN LORENTZ-MINKOWSKI SPACE Rn+11
    Gao, Ya
    Mao, Jing
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (03) : 347 - 364
  • [37] Bernstein-Type Theorem for Zero Mean Curvature Hypersurfaces Without Time-like Points in Lorentz-Minkowski Space
    Akamine, S.
    Honda, A.
    Umehara, M.
    Yamada, K.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (01): : 175 - 181
  • [38] Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space
    He, Zhiqian
    Miao, Liangying
    AIMS MATHEMATICS, 2020, 5 (04): : 3840 - 3850
  • [39] Classification of Ruled Surfaces as Homothetic Self-Similar Solutions of the Inverse Mean Curvature Flow in the Lorentz-Minkowski 3-Space
    Neto, Gregorio Silva
    Silva, Vanessa
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (04):
  • [40] ZERO MEAN CURVATURE SURFACES IN LORENTZ-MINKOWSKI 3-SPACE WHICH CHANGE TYPE ACROSS A LIGHT-LIKE LINE
    Fujimori, S.
    Kim, Y. W.
    Koh, S. -E.
    Rossman, W.
    Shin, H.
    Umehara, M.
    Yamada, K.
    Yang, S. -D.
    OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (01) : 285 - 297