A Sharp Gradient Estimate and W2,q Regularity for the Prescribed Mean Curvature Equation in the Lorentz-Minkowski Space

被引:0
|
作者
Bonheure, Denis [1 ]
Iacopetti, Alessandro [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Campus Plaine CP214 Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
RADIAL GRAPHS; HYPERSURFACES; SURFACES; FOUNDATIONS;
D O I
10.1007/s00205-023-01910-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the prescribed mean curvature equation for entire spacelike hypersurfaces in the Lorentz-Minkowski space, namely -div(del u/root 1-|del u|(2)) =rho in R-N , where N (sic) 3. We first prove a new gradient estimate for classical solutions with smooth data rho. As a consequence, we obtain that the unique weak solution of the equation satisfying a homogeneous boundary condition at infinity is locally of class W-2,W-q and strictly spacelike in R-N, provided that rho is an element of L-q (R-N) boolean AND L-m(R-N) with q > N and m is an element of [1, 2N/N+2].
引用
收藏
页数:44
相关论文
共 44 条