IMPROVED RESULTS ON THE OSCILLATION OF THE MODULUS OF THE RUDIN-SHAPIRO POLYNOMIALS ON THE UNIT CIRCLE

被引:0
|
作者
Erdalyi, Tamas [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Polynomials; restricted coefficients; oscillation of the modulus on the unit circle; Rudin-Shapiro polynomials; number of real zeros in the period; COSINE POLYNOMIALS; REAL ZEROS; COEFFICIENTS; MOMENTS; THEOREM; BOUNDS; ROOTS;
D O I
10.1090/proc/14490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Rk(t) := |Pk(eit)|2 and Sk(t) := |Qk(eit)|2, where Pk and Qk are the usual Rudin-Shapiro polynomials of degree n - 1 with n = 2k. In a recent paper we combined close to sharp upper bounds for the modulus of the autocorrelation coefficients of the Rudin-Shapiro polynomials with a deep theorem of Littlewood to prove that there is an absolute constant A > 0 such that the equations Rk(t) = (1 + eta)n and Sk(t) = (1 + eta)n have at least An0.5394282 distinct solutions in [0, 2 pi) whenever eta is real, |eta| < 2-8, and k is sufficiently large. In this paper we show that the equations Rk(t) = (1 + eta)n and Sk(t) = (1+ eta)n have at least (1/2-|eta|- epsilon)n/2 distinct solutions in [0, 2 pi) for every eta is an element of (-1/2, 1/2), epsilon > 0, and sufficiently large be k >= k eta,epsilon.
引用
收藏
页码:2733 / 2740
页数:8
相关论文
共 28 条
  • [1] ON THE OSCILLATION OF THE MODULUS OF THE RUDIN-SHAPIRO POLYNOMIALS ON THE UNIT CIRCLE
    Erdelyi, Tamas
    MATHEMATIKA, 2020, 66 (01) : 144 - 160
  • [2] RUDIN-SHAPIRO POLYNOMIALS
    BRILLHART, J
    DUKE MATHEMATICAL JOURNAL, 1973, 40 (02) : 335 - 353
  • [3] Moments of the Rudin-Shapiro polynomials
    Doche, C
    Habsieger, L
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (05) : 497 - 505
  • [4] CYCLOTOMIC PROPERTIES OF RUDIN-SHAPIRO POLYNOMIALS
    BRILLHART, J
    LOMONT, JS
    MORTON, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 288 : 37 - 65
  • [5] The Mahler Measure of the Rudin-Shapiro Polynomials
    Erdelyi, Tamas
    CONSTRUCTIVE APPROXIMATION, 2016, 43 (03) : 357 - 369
  • [6] Wavelets generated by the Rudin-Shapiro polynomials
    Abdollahi, Abdolaziz
    Cheshmavar, Jahangir
    Taghavi, Mohsen
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (02): : 441 - 448
  • [7] An estimate on the correlation coefficients of the Rudin-Shapiro polynomials
    Taghavi, M
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1996, 20 (02): : 235 - 240
  • [8] Even moments of generalized Rudin-Shapiro polynomials
    Doche, C
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1923 - 1935
  • [9] Bounds on Autocorrelation Coefficients of Rudin-Shapiro Polynomials
    J.-P. Allouche
    S. Choi
    A. Denise
    T. Erdélyi
    B. Saffari
    Analysis Mathematica, 2019, 45 : 705 - 726
  • [10] Bounds on Autocorrelation Coefficients of Rudin-Shapiro Polynomials
    Allouche, J. -P.
    Choi, S.
    Denise, A.
    Erdelyi, T.
    Saffari, B.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 705 - 726