The Mahler Measure of the Rudin-Shapiro Polynomials

被引:6
|
作者
Erdelyi, Tamas [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Rudin-Shapiro polynomials; Littlewood polynomials; Mahler measure; FEKETE; NORM; MOMENTS; BOUNDS;
D O I
10.1007/s00365-015-9297-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Littlewood polynomials are polynomials with each of their coefficients in . A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin-Shapiro polynomials. It is shown in this paper that the Mahler measure and the maximum modulus of the Rudin-Shapiro polynomials on the unit circle of the complex plane have the same size. It is also shown that the Mahler measure and the maximum norm of the Rudin-Shapiro polynomials have the same size even on not too small subarcs of the unit circle of the complex plane. Not even nontrivial lower bounds for the Mahler measure of the Rudin-Shapiro polynomials have been known before.
引用
收藏
页码:357 / 369
页数:13
相关论文
共 50 条
  • [1] The asymptotic value of the Mahler measure of the Rudin-Shapiro polynomials
    Tamás Erdélyi
    Journal d'Analyse Mathématique, 2020, 142 : 521 - 537
  • [2] The asymptotic value of the Mahler measure of the Rudin-Shapiro polynomials
    Erdelyi, Tamas
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 142 (02): : 521 - 537
  • [3] The Mahler Measure of the Rudin–Shapiro Polynomials
    Tamás Erdélyi
    Constructive Approximation, 2016, 43 : 357 - 369
  • [4] RUDIN-SHAPIRO POLYNOMIALS
    BRILLHART, J
    DUKE MATHEMATICAL JOURNAL, 1973, 40 (02) : 335 - 353
  • [5] Moments of the Rudin-Shapiro polynomials
    Doche, C
    Habsieger, L
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (05) : 497 - 505
  • [6] CYCLOTOMIC PROPERTIES OF RUDIN-SHAPIRO POLYNOMIALS
    BRILLHART, J
    LOMONT, JS
    MORTON, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 288 : 37 - 65
  • [7] Wavelets generated by the Rudin-Shapiro polynomials
    Abdollahi, Abdolaziz
    Cheshmavar, Jahangir
    Taghavi, Mohsen
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (02): : 441 - 448
  • [8] An estimate on the correlation coefficients of the Rudin-Shapiro polynomials
    Taghavi, M
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1996, 20 (02): : 235 - 240
  • [9] Even moments of generalized Rudin-Shapiro polynomials
    Doche, C
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1923 - 1935
  • [10] Bounds on Autocorrelation Coefficients of Rudin-Shapiro Polynomials
    J.-P. Allouche
    S. Choi
    A. Denise
    T. Erdélyi
    B. Saffari
    Analysis Mathematica, 2019, 45 : 705 - 726