Hyperspectral Image Super-Resolution Algorithm Based on Graph Regular Tensor Ring Decomposition

被引:1
|
作者
Sun, Shasha [1 ]
Bao, Wenxing [1 ]
Qu, Kewen [1 ]
Feng, Wei [2 ]
Zhang, Xiaowu [1 ]
Ma, Xuan [1 ]
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan 750021, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
关键词
hyperspectral images; super-resolution; graph regular; spectral coherence; tensor ring decomposition; COMPONENT-SUBSTITUTION; MULTISPECTRAL IMAGES; FUSION; SPARSE; REPRESENTATION; FACTORIZATION; NETWORK;
D O I
10.3390/rs15204983
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper introduces a novel hyperspectral image super-resolution algorithm based on graph-regularized tensor ring decomposition aimed at resolving the challenges of hyperspectral image super-resolution. This algorithm seamlessly integrates graph regularization and tensor ring decomposition, presenting an innovative fusion model that effectively leverages the spatial structure and spectral information inherent in hyperspectral images. At the core of the algorithm lies an iterative optimization process embedded within the objective function. This iterative process incrementally refines latent feature representations. It incorporates spatial smoothness constraints and graph regularization terms to enhance the quality of super-resolution reconstruction and preserve image features. Specifically, low-resolution hyperspectral images (HSIs) and high-resolution multispectral images (MSIs) are obtained through spatial and spectral downsampling, which are then treated as nodes in a constructed graph, efficiently fusing spatial and spectral information. By utilizing tensor ring decomposition, HSIs and MSIs undergo feature decomposition, and the objective function is formulated to merge reconstructed results with the original images. Through a multi-stage iterative optimization procedure, the algorithm progressively enhances latent feature representations, leading to super-resolution hyperspectral image reconstruction. The algorithm's significant achievements are demonstrated through experiments, producing sharper, more detailed high-resolution hyperspectral images (HRIs) with an improved reconstruction quality and retained spectral information. By combining the advantages of graph regularization and tensor ring decomposition, the proposed algorithm showcases substantial potential and feasibility within the domain of hyperspectral image super-resolution.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach
    Kanatsoulis, Charilaos, I
    Fu, Xiao
    Sidiropoulos, Nicholas D.
    Ma, Wing-Kin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (24) : 6503 - 6517
  • [32] Hyperspectral Image Super-Resolution Based on Feature Diversity Extraction
    Zhang, Jing
    Zheng, Renjie
    Wan, Zekang
    Geng, Ruijing
    Wang, Yi
    Yang, Yu
    Zhang, Xuepeng
    Li, Yunsong
    REMOTE SENSING, 2024, 16 (03)
  • [33] Adaptive Super-Resolution Algorithm Based on MCA Decomposition
    Liu, Chang
    Liu, Yi Jun
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 2704 - 2708
  • [34] Hyperspectral Image Super-Resolution: Task-Based Evaluation
    Kawulok, Michal
    Kowaleczko, Pawel
    Ziaja, Maciej
    Nalepa, Jakub
    Kostrzewa, Daniel
    Latini, Daniele
    De Santis, Davide
    Salvucci, Giorgia
    Petracca, Ilaria
    Pegna, Valeria La
    Bartalis, Zoltan
    Frate, Fabio Del
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 18949 - 18966
  • [35] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [36] Hyperspectral image super-resolution based on attention ConvBiLSTM network
    Lu, Xiaochen
    Liu, Xiaohui
    Zhang, Lei
    Jia, Fengde
    Yang, Yunlong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 5059 - 5074
  • [37] Hyperspectral Image Super-Resolution With a Mosaic RGB Image
    Fu, Ying
    Zheng, Yinqiang
    Huang, Hua
    Sato, Imari
    Sato, Yoichi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5539 - 5552
  • [38] Hyperspectral Super-resolution Accounting for Spectral Variability: Coupled Tensor LL1-Based Recovery and Blind Unmixing of the Unknown Super-resolution Image*
    Prevost, Clemence
    Borsoi, Ricardo A.
    Usevich, Konstantin
    Brie, David
    Bermudez, Jose C. M.
    Richard, Cedric
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (01): : 110 - 138
  • [39] Deep Blind Hyperspectral Image Super-Resolution
    Zhang, Lei
    Nie, Jiangtao
    Wei, Wei
    Li, Yong
    Zhang, Yanning
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2388 - 2400
  • [40] Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2672 - 2683