Deep learning-based IMRT treatment planning on synthetic-CT for ART in NSCLC-patients

被引:0
|
作者
Callens, D. [1 ,2 ]
Vandewinckele, L. [2 ]
Berkovic, P. [1 ]
Maes, F. [3 ,4 ]
Lambrecht, M. [1 ,2 ]
Crijns, W. [1 ,2 ]
机构
[1] UZ Leuven, Dept Radiat Oncol, Leuven, Belgium
[2] Katholieke Univ Leuven, Lab Expt Radiotherapy, Leuven, Belgium
[3] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[4] Katholieke Univ Leuven, Proc Speech & Images ESATPSI, Leuven, Belgium
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1637
引用
收藏
页码:S1333 / S1334
页数:2
相关论文
共 50 条
  • [21] Human validation of a Deep Learning MRI-based Synthetic CT for RT Planning
    Crespi, L.
    Camnasio, S.
    Dei, D.
    Lambri, N.
    Mancosu, P.
    Scorsetti, M.
    Loiacono, D.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S750 - S751
  • [22] Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
    Maria Kawula
    Dinu Purice
    Minglun Li
    Gerome Vivar
    Seyed-Ahmad Ahmadi
    Katia Parodi
    Claus Belka
    Guillaume Landry
    Christopher Kurz
    Radiation Oncology, 17
  • [23] Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
    Kawula, Maria
    Purice, Dinu
    Li, Minglun
    Vivar, Gerome
    Ahmadi, Seyed-Ahmad
    Parodi, Katia
    Belka, Claus
    Landry, Guillaume
    Kurz, Christopher
    RADIATION ONCOLOGY, 2022, 17 (01)
  • [24] Deep learning cycleGAN MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers
    Bird, D.
    Speight, R.
    Andersson, S.
    Wingqvist, J.
    Al-Qaisieh, B.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S555 - S556
  • [25] Evaluation of U-Net Generated MRI Based Synthetic CT Images for Prostate IMRT Treatment Planning
    Chen, S.
    Qin, A.
    Zhou, D.
    Yan, D.
    MEDICAL PHYSICS, 2018, 45 (06) : E361 - E361
  • [26] The feasibility of deep learning-based synthetic contrast-enhanced CT from nonenhanced CT in emergency department patients with acute abdominal pain
    Kim, Se Woo
    Kim, Jung Hoon
    Kwak, Suha
    Seo, Minkyo
    Ryoo, Changhyun
    Shin, Cheong-Il
    Jang, Siwon
    Cho, Jungheum
    Kim, Young-Hoon
    Jeon, Kyutae
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] The feasibility of deep learning-based synthetic contrast-enhanced CT from nonenhanced CT in emergency department patients with acute abdominal pain
    Se Woo Kim
    Jung Hoon Kim
    Suha Kwak
    Minkyo Seo
    Changhyun Ryoo
    Cheong-Il Shin
    Siwon Jang
    Jungheum Cho
    Young-Hoon Kim
    Kyutae Jeon
    Scientific Reports, 11
  • [28] Deep Learning-based Low Dose CT Imaging
    Wang, Tonghe
    Lei, Yang
    Dong, Xue
    Tian, Zhen
    Tang, Xiangyang
    Liu, Yingzi
    Jiang, Xiaojun
    Curran, Walter J.
    Liu, Tian
    Shu, Hui-Kuo
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [29] Deep learning-based segmentation of prostatic urethra on computed tomography scans for treatment planning
    Cubero, Lucia
    Garcia-Elcano, Laura
    Mylona, Eugenia
    Boue-Rafle, Adrien
    Cozzarini, Cesare
    Gabellini, Maria Giulia Ubeira
    Rancati, Tiziana
    Fiorino, Claudio
    de Crevoisier, Renaud
    Acosta, Oscar
    Pascau, Javier
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 26
  • [30] A Deep Learning-Based Approach for Statistical Robustness Evaluation in Proton Therapy Treatment Planning
    Vazquez, I.
    Gronberg, M.
    Zhang, X.
    Court, L.
    Zhu, X.
    Frank, S.
    Yang, M.
    MEDICAL PHYSICS, 2022, 49 (06) : E208 - E208