Deep learning-based IMRT treatment planning on synthetic-CT for ART in NSCLC-patients

被引:0
|
作者
Callens, D. [1 ,2 ]
Vandewinckele, L. [2 ]
Berkovic, P. [1 ]
Maes, F. [3 ,4 ]
Lambrecht, M. [1 ,2 ]
Crijns, W. [1 ,2 ]
机构
[1] UZ Leuven, Dept Radiat Oncol, Leuven, Belgium
[2] Katholieke Univ Leuven, Lab Expt Radiotherapy, Leuven, Belgium
[3] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[4] Katholieke Univ Leuven, Proc Speech & Images ESATPSI, Leuven, Belgium
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1637
引用
收藏
页码:S1333 / S1334
页数:2
相关论文
共 50 条
  • [1] Deep learning-based synthetic-CT generation in radiotherapy and PET: A review
    Spadea, Maria Francesca
    Maspero, Matteo
    Zaffino, Paolo
    Seco, Joao
    arXiv, 2021,
  • [2] Deep learning based synthetic-CT generation in radiotherapy and PET: A review
    Spadea, Maria Francesca
    Maspero, Matteo
    Zaffino, Paolo
    Seco, Joao
    MEDICAL PHYSICS, 2021, 48 (11) : 6537 - 6566
  • [3] Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning
    Bird, David
    Nix, Michael G.
    McCallum, Hazel
    Teo, Mark
    Gilbert, Alexandra
    Casanova, Nathalie
    Cooper, Rachel
    Buckley, David L.
    Sebag-Montefiore, David
    Speight, Richard
    Al-Qaisieh, Bashar
    Henry, Ann M.
    RADIOTHERAPY AND ONCOLOGY, 2021, 156 : 23 - 28
  • [4] Validation of deep learning-based CT image reconstruction for treatment planning
    Yasui, Keisuke
    Saito, Yasunori
    Ito, Azumi
    Douwaki, Momoka
    Ogawa, Shuta
    Kasugai, Yuri
    Ooe, Hiromu
    Nagake, Yuya
    Hayashi, Naoki
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Validation of deep learning-based CT image reconstruction for treatment planning
    Keisuke Yasui
    Yasunori Saito
    Azumi Ito
    Momoka Douwaki
    Shuta Ogawa
    Yuri Kasugai
    Hiromu Ooe
    Yuya Nagake
    Naoki Hayashi
    Scientific Reports, 13
  • [6] Deep Learning-based segmentation of prostatic urethra on CT scans for treatment planning
    Garcia-Elcano, L.
    Mylona, E.
    Acosta, O.
    Lizee, T.
    Gnep, K.
    de Crevoisier, R.
    Pascau, J.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S686 - S688
  • [7] Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning
    Liu, Yingzi
    Lei, Yang
    Wang, Yinan
    Shafai-Erfani, Ghazal
    Wang, Tonghe
    Tian, Sibo
    Patel, Pretesh
    Jani, Ashesh B.
    McDonald, Mark
    Curran, Walter J.
    Liu, Tian
    Zhou, Jun
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (20):
  • [8] Dosimetric evaluation of deep learning based synthetic-CT generation for MR-only brain radiotherapy
    Dinkla, A. M.
    Wolterink, J. M.
    Maspero, M.
    Savenije, M. H. F.
    Verhoeff, J. J. C.
    Isgum, I.
    Seevinck, P. R.
    Lagendijk, J. J. W.
    Van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S151 - S151
  • [9] MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method
    Liu, Yingzi
    Lei, Yang
    Wang, Tonghe
    Kayode, Oluwatosin
    Tian, Sibo
    Liu, Tian
    Patel, Pretesh
    Curran, Walter J.
    Ren, Lei
    Yang, Xiaofeng
    BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1100):
  • [10] MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method
    Liu, Yingzi
    Lei, Yang
    Wang, Yinan
    Wang, Tonghe
    Ren, Lei
    Lin, Liyong
    McDonald, Mark
    Curran, Walter J.
    Liu, Tian
    Zhou, Jun
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (14):