A transfer learning-based deep convolutional neural network approach for induction machine multiple faults detection

被引:1
|
作者
Kumar, Prashant [1 ]
Hati, Ananda Shankar [2 ,3 ]
Kumar, Prince [2 ]
机构
[1] Dongguk Univ, Dept Mech Robot & Energy Engn, Seoul, South Korea
[2] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad, Jharkhand, India
[3] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad 826004, Jharkhand, India
关键词
bearing fault; broken rotor bar; convolutional neural network; deep learning; fault diagnosis; squirrel cage induction motors; transfer learning; SUPPORT VECTOR MACHINE; DIAGNOSIS; FUSION; MOTORS;
D O I
10.1002/acs.3643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The condition monitoring of squirrel cage induction motors (SCIMs) is vital for uninterrupted production and minimum downtime. Early fault detection can boost output with minimum effort. This article combines the application of transfer learning and convolution neural network (TL-CNN) for developing an efficient model for bearing and rotor broken bars damage identification in SCIMs. A simple technique for the 1-D current signal-to-image conversion is also proposed to provide input to the proposed deep learning-based TL-CNN technique. The proposed approach embodies the advantages of TL and CNN for effective fault identification in SCIMs. The developed technique has classified faults efficiently with an average accuracy of 99.40%. The complete analysis and data collection have been done on the experimental set-up with a 5 kW SCIM and LabVIEW-based data acquisition system. The propounded fault detection model has been created in python with the help of packages like Keras and TensorFlow.
引用
收藏
页码:2380 / 2393
页数:14
相关论文
共 50 条
  • [31] Deep transfer learning-based approach for detection of cracks on eggs
    Botta, Bhavya
    Datta, Ashis Kumar
    JOURNAL OF FOOD PROCESS ENGINEERING, 2023, 46 (11)
  • [32] Sparse Deep Transfer Learning for Convolutional Neural Network
    Liu, Jiaming
    Wang, Yali
    Qiao, Yu
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2245 - 2251
  • [33] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [34] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [35] Deep convolutional transfer learning-based structural damage detection with domain adaptation
    Zuoyi Chen
    Chao Wang
    Jun Wu
    Chao Deng
    Yuanhang Wang
    Applied Intelligence, 2023, 53 : 5085 - 5099
  • [36] Deep convolutional transfer learning-based structural damage detection with domain adaptation
    Chen, Zuoyi
    Wang, Chao
    Wu, Jun
    Deng, Chao
    Wang, Yuanhang
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5085 - 5099
  • [37] Deep Learning-Based Community Detection Approach on Bitcoin Network
    Essaid, Meryam
    Ju, Hongteak
    SYSTEMS, 2022, 10 (06):
  • [38] Enhancing geotechnical damage detection with deep learning: a convolutional neural network approach
    de Araujo, Thabatta Moreira Alves
    Teixeira, Carlos Andre de Mattos
    Frances, Carlos Renato Lisboa
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [39] Enhancing geotechnical damage detection with deep learning: a convolutional neural network approach
    de Araujo, Thabatta Moreira Alves
    de Mattos Teixeira, Carlos André
    Francês, Carlos Renato Lisboa
    PeerJ Computer Science, 2024, 10
  • [40] Machine Learning-Based Solar Cell Anomaly Detection using Discrete Wavelet Transform and Convolutional Neural Network
    Ogar, Emmanuel Ede
    Chaitusaney, Surachai
    Benjapolakul, Watit
    2023 IEEE PES 15TH ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE, APPEEC, 2023,