GENERIC KAM HAMILTONIANS ARE NOT QUANTUM ERGODIC

被引:0
|
作者
Gomes, Sean [1 ]
机构
[1] Northwestern Univ, Dept Math, Chicago, IL 60611 USA
来源
ANALYSIS & PDE | 2023年 / 16卷 / 01期
关键词
quantum ergodicity; KAM Hamiltonians; EFFECTIVE STABILITY; INVARIANT TORI; QUASIMODES; THEOREM;
D O I
10.2140/apde.2023.16.119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that under generic conditions, the quantisation of a 1-parameter family of KAM perturbations P(x, xi; t) of a completely integrable and Kolmogorov nondegenerate Gevrey smooth Hamiltonian is not quantum ergodic for a full-measure subset of parameter values t is an element of (0, delta).
引用
收藏
页码:119 / 171
页数:55
相关论文
共 50 条
  • [41] Hamiltonians for quantum computing
    Privman, V
    Mozyrsky, D
    Hotaling, SP
    PHOTONIC QUANTUM COMPUTING, 1997, 3076 : 84 - 96
  • [42] ON THE DETERMINATION OF QUANTUM HAMILTONIANS
    YAN, CC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 80 (01): : 104 - 108
  • [43] KAM theorem and quantum field theory
    Bricmont, J
    Gawedzki, K
    Kupiainen, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) : 699 - 727
  • [44] KAM Theorem and Quantum Field Theory
    Jean Bricmont
    Krzysztof Gawędzki
    Antti Kupiainen
    Communications in Mathematical Physics, 1999, 201 : 699 - 727
  • [45] Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians
    Lenz, D
    Stollmann, P
    DUKE MATHEMATICAL JOURNAL, 2006, 131 (02) : 203 - 217
  • [46] Ergodic quantum computing
    Janzing, Dominik
    Wocjan, Pawel
    QUANTUM INFORMATION PROCESSING, 2005, 4 (02) : 129 - 158
  • [47] Ergodic Quantum Computing
    Dominik Janzing
    Pawel Wocjan
    Quantum Information Processing, 2005, 4 : 129 - 158
  • [48] Constrained ergodic optimization for generic continuous functions
    Motonaga, Shoya
    Shinoda, Mao
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (03): : 408 - 423
  • [49] Generic singular spectrum for ergodic Schrodinger operators
    Avila, A
    Damanik, D
    DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) : 393 - 400
  • [50] Generic continuous spectrum for ergodic Schrodinger operators
    Boshernitzan, Michael
    Damanik, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (03) : 647 - 662