THE SCHEME OF CHARACTERS IN SL2

被引:0
|
作者
Heusener, Michael [1 ]
Porti, Joan [2 ,3 ]
机构
[1] Univ CLERMONT AUVERGNE, CNRS, Lab Math BLAISE PASCAL, FERRAND, F-63000 Clermont ferrand, France
[2] Univ Autonoma Barcelona, Dept Matematiques, CERDA, Barcelona 08193, Spain
[3] Ctr Recerca Matemat Crm, Barcelona, Spain
关键词
Representation variety; character variety; CONE STRUCTURES; REPRESENTATIONS; VARIETIES;
D O I
10.1090/tran/8910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to study the SL2(C)-character scheme of a finitely generated group. Given a presentation of a finitely generated group I', we give equations defining the coordinate ring of the scheme of SL2(C)- characters of I' (finitely many equations when I' is finitely presented). We also study the scheme of abelian and non-simple representations and characters. Finally we apply our results to study the SL2(C)-character scheme of the Borromean rings.
引用
收藏
页码:6283 / 6313
页数:31
相关论文
共 50 条
  • [21] Linear groups of degree four containing the subgroup SL2(k) ⊗ SL2(k)
    Bashkirov, Evgenii L.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) : 1688 - 1701
  • [22] On Turan number for Sl1 ∨ Sl2
    Li, Jia-Yun
    Li, Sha-Sha
    Yin, Jian-Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 385
  • [23] Product theorems in SL2 and SL3
    Chang, Mei-Chu
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (01) : 1 - 25
  • [24] On certain tilting modules for SL2
    Martin, Samuel
    JOURNAL OF ALGEBRA, 2018, 506 : 397 - 408
  • [25] Cohomology for Frobenius kernels of SL2
    Ngo, Nham V.
    JOURNAL OF ALGEBRA, 2013, 396 : 39 - 60
  • [26] Structure constants of U(sl2)
    Gourley, Alexia
    Kennedy, Christopher
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 541 - 550
  • [27] DISCRETE SUBGROUPS OF SL2(IR)
    HELLING, H
    INVENTIONES MATHEMATICAE, 1972, 17 (03) : 217 - &
  • [28] MODULES OVER UQ(SL2)
    SUTER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) : 359 - 393
  • [29] On the functoriality of sl2 tangle homology
    Beliakova, Anna
    Hogancamp, Matthew
    Putyra, Krzysztof K.
    Wehrli, Stephan M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (03): : 1303 - 1361
  • [30] QUIVERS FOR SL2 TILTING MODULES
    Tubbenhauer, Daniel
    Wedrich, Paul
    REPRESENTATION THEORY, 2021, 25 : 440 - 480