Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:19
|
作者
Yi, Xuerui [1 ,2 ,3 ]
Guo, Yong [1 ,2 ,3 ]
Chi, Sijia [1 ,2 ,3 ]
Pan, Siyuan [1 ,2 ,3 ]
Geng, Chuannan [1 ,2 ,3 ]
Li, Mengyao [4 ]
Li, Zhenshen [1 ,2 ,3 ]
Lv, Wei [4 ]
Wu, Shichao [1 ,2 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp,Natl Ind Educ Integrat Platform Ener, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr Engn Lab Functionalized, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
composite polymer electrolytes; dehydrofluorination; interfaces; phosphorization; poly(vinylidene fluoride-co-hexafluoropropylene); LAYERS;
D O I
10.1002/adfm.202303574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte
    Wang, Xue
    Zhai, Haowei
    Qie, Boyu
    Cheng, Qian
    Li, Aijun
    Borovilas, James
    Xu, Bingqing
    Shi, Changmin
    Jin, Tianwei
    Liao, Xiangbiao
    Li, Yibin
    He, Xiaodong
    Du, Shanyi
    Fu, Yanke
    Dontigny, Martin
    Zaghib, Karim
    Yang, Yuan
    NANO ENERGY, 2019, 60 : 205 - 212
  • [42] Electrochemical Characteristics of a Polymer/Garnet Trilayer Composite Electrolyte for Solid-State Lithium-Metal Batteries
    Walle, Kumlachew Zelalem
    Babulal, Lakshmipriya Musuvadhi
    Wu, She-Huang
    Chien, Wen-Chen
    Jose, Rajan
    Lue, Shingjiang Jessie
    Chang, Jeng-Kuei
    Yang, Chun-Chen
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) : 2507 - 2520
  • [43] A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries
    Yuan, Boheng
    Zhao, Bin
    Wang, Qi
    Bai, Yuge
    Cheng, Zhiwei
    Cong, Zhi
    Lu, Yafei
    Ji, Fangdi
    Shen, Fei
    Wang, Peng-Fei
    Han, Xiaogang
    ENERGY STORAGE MATERIALS, 2022, 47 : 288 - 296
  • [44] A Fireproof, Lightweight, Polymer-Polymer Solid-State Electrolyte for Safe Lithium Batteries
    Cui, Yi
    Wan, Jiayu
    Ye, Yusheng
    Liu, Kai
    Chou, Lien-Yang
    NANO LETTERS, 2020, 20 (03) : 1686 - 1692
  • [45] A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries
    Yuan, Boheng
    Zhao, Bin
    Wang, Qi
    Bai, Yuge
    Cheng, Zhiwei
    Cong, Zhi
    Lu, Yafei
    Ji, Fangdi
    Shen, Fei
    Wang, Peng-Fei
    Han, Xiaogang
    Energy Storage Materials, 2022, 47 : 288 - 296
  • [46] Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries
    Huo, Hanyu
    Li, Xiaona
    Sun, Yipeng
    Lin, Xiaoting
    Doyle-Davis, Kieran
    Liang, Jianwen
    Gao, Xuejie
    Li, Ruying
    Huang, Huan
    Guo, Xiangxin
    Sun, Xueling
    NANO ENERGY, 2020, 73
  • [47] Directly Using Li2CO3 as a Lithiophobic Interlayer to Inhibit Li Dendrites for High-Performance Solid-State Batteries
    Chen, Butian
    Zhang, Jicheng
    Zhang, Tianran
    Wang, Ruoyu
    Zheng, Jian
    Liu, Chong
    Liu, Xiangfeng
    ACS ENERGY LETTERS, 2023, 8 (05) : 2221 - 2231
  • [48] Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries
    Xu, Haoshan
    Huang, Shuhong
    Qian, Jiaqi
    Liu, Siming
    Li, Ling
    Zhao, Xiaohui
    Zhang, Wenming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 653
  • [49] A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries
    Pan, Kecheng
    Zhang, Lan
    Qian, Weiwei
    Wu, Xiangkun
    Dong, Kun
    Zhang, Haitao
    Zhang, Suojiang
    ADVANCED MATERIALS, 2020, 32 (17)
  • [50] Clean Solid-Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries
    Kawasoko, Hideyuki
    Shirasawa, Tetsuroh
    Nishio, Kazunori
    Shimizu, Ryota
    Shiraki, Susumu
    Hitosugi, Taro
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (04) : 5861 - 5865