Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:19
|
作者
Yi, Xuerui [1 ,2 ,3 ]
Guo, Yong [1 ,2 ,3 ]
Chi, Sijia [1 ,2 ,3 ]
Pan, Siyuan [1 ,2 ,3 ]
Geng, Chuannan [1 ,2 ,3 ]
Li, Mengyao [4 ]
Li, Zhenshen [1 ,2 ,3 ]
Lv, Wei [4 ]
Wu, Shichao [1 ,2 ,3 ]
Yang, Quan-Hong [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Nanoyang Grp,Natl Ind Educ Integrat Platform Ener, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr Engn Lab Functionalized, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[5] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
composite polymer electrolytes; dehydrofluorination; interfaces; phosphorization; poly(vinylidene fluoride-co-hexafluoropropylene); LAYERS;
D O I
10.1002/adfm.202303574
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) are subject to interface incompatibilities due to the space charge layer of ceramic and polymer phases. The intensive dehydrofluorination of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) incorporating Li7La3Zr2O12 (LLZO) significantly compromises electro-chemo-mechanical properties and compatibilities with electrodes. Herein, this study addresses the challenges by precisely phosphatizing LLZO surfaces through a surface Li2CO3 mediated chemical reaction. The designed neutral chemical environment of LLZO surfaces ensures high air stability and effective suppression of PVDF-HFP dehydrofluorination. This greatly facilitates the uniform distribution of ceramic and polymer phases, and fast interfacial Li+ exchange, establishing high-throughput ion percolation pathways and distinctly enhancing ionic conductivity and transference number. Moreover, the dramatically reduced formation of dehydrofluorination products and an in situ formed interphase layer between phosphatized surface and a Li metal anode stabilize the Li/CPE and cathode/CPE interfaces, which provide a symmetric Li/Li cell and solid-state Li/LiFePO4 and Li/LiNi0.8Co0.1Mn0.1O2 cells an exceptional cycling performance at room temperature. This study emphasizes the vital importance of achieving electro-chemo-mechanical compatibilities for CPEs and provides a new waste to wealth route.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li2CO3
    Guo, Yong
    Pan, Siyuan
    Yi, Xuerui
    Chi, Sijia
    Yin, Xunjie
    Geng, Chuannan
    Yin, Qianhui
    Zhan, Qinyi
    Zhao, Ziyun
    Jin, Feng-Min
    Fang, Hui
    He, Yan-Bing
    Kang, Feiyu
    Wu, Shichao
    Yang, Quan-Hong
    ADVANCED MATERIALS, 2024, 36 (13)
  • [2] Duality of Li2CO3 in Solid-State Batteries
    Yi, Xuerui
    Guo, Yong
    Pan, Siyuan
    Wang, Yiqiao
    Chi, Sijia
    Wu, Shichao
    Yang, Quan-Hong
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2023, 29 (01) : 73 - 87
  • [3] Duality of Li2CO3 in Solid-State Batteries
    Xuerui Yi
    Yong Guo
    Siyuan Pan
    Yiqiao Wang
    Sijia Chi
    Shichao Wu
    Quan-Hong Yang
    Transactions of Tianjin University, 2023, 29 : 73 - 87
  • [4] Duality of Li2CO3 in Solid-State Batteries
    Xuerui Yi
    Yong Guo
    Siyuan Pan
    Yiqiao Wang
    Sijia Chi
    Shichao Wu
    Quan-Hong Yang
    Transactions of Tianjin University, 2023, (01) : 73 - 86
  • [5] Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries
    Chen, Xiao
    Sun, Qiushi
    Xie, Jian
    Huang, Cheng
    Xu, Xiongwen
    Tu, Jian
    Zhao, Xinbing
    Zhu, Tiejun
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 91 - 99
  • [6] Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries
    Xiao Chen
    Qiushi Sun
    Jian Xie
    Cheng Huang
    Xiongwen Xu
    Jian Tu
    Xinbing Zhao
    Tiejun Zhu
    Journal of Energy Chemistry, 2022, 74 (11) : 91 - 99
  • [7] Particles in composite polymer electrolyte for solid-state lithium batteries: A review
    Meng, Nan
    Zhu, Xiaogang
    Lian, Fang
    PARTICUOLOGY, 2022, 60 : 14 - 36
  • [8] Constructing an interface compatible Li anode in organic electrolyte for solid-state lithium batteries
    Sun, Xiaolin
    Niu, Quanhai
    Song, Depeng
    Sun, Shimei
    Li, Minmin
    Ohsaka, Takeo
    Matsumoto, Futoshi
    Wu, Jianfei
    JOURNAL OF ENERGY STORAGE, 2020, 27 (27)
  • [9] A Composite Solid-state Polymer Electrolyte for Solid-state Sodium Batteries
    Zhang Q.
    Su X.
    Lu Y.
    Hu Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (07): : 939 - 946
  • [10] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)