Integral boundary conditions in phase field models
被引:4
|
作者:
Xu, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Xu, Xiaofeng
[1
]
Zhang, Lian
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Res Inst Big Data, Shenzhen Int Ctr Ind & Appl Math, Shenzhen 518172, Guangdong, Peoples R ChinaPenn State Univ, Dept Math, University Pk, PA 16802 USA
Zhang, Lian
[2
]
Shi, Yin
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Shi, Yin
[3
]
Chen, Long-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Chen, Long-Qing
[3
]
Xu, Jinchao
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Math, University Pk, PA 16802 USA
Xu, Jinchao
[1
]
机构:
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Shenzhen Res Inst Big Data, Shenzhen Int Ctr Ind & Appl Math, Shenzhen 518172, Guangdong, Peoples R China
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
Phase field;
Integral boundary condition;
Well-posedness;
Algebraic multigrid;
DYNAMICS;
D O I:
10.1016/j.camwa.2022.11.025
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Modeling the chemical, electric and thermal transport as well as phase transitions and the accompanying mesoscale microstructure evolution within a material in an electronic device setting involves the solution of partial differential equations often with integral boundary conditions. Employing the familiar Poisson equation describing the electric potential evolution in a material exhibiting insulator to metal transitions, we exploit a special property of such an integral boundary condition, and we properly formulate the variational problem and establish its well-posedness. We then compare our method with the commonly-used Lagrange multiplier method that can also handle such boundary conditions. Numerical experiments demonstrate that our new method achieves optimal convergence rate in contrast to the conventional Lagrange multiplier method. Furthermore, the linear system derived from our method is symmetric positive definite, and can be efficiently solved by Conjugate Gradient method with algebraic multigrid preconditioning.
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, GermanyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
Di Tucci, Alice
Lehners, Jean-Luc
论文数: 0引用数: 0
h-index: 0
机构:
Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, GermanyAlbert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany