Multi-Channel Expression Recognition Network Based on Channel Weighting

被引:0
|
作者
Lu, Xiuwen [1 ,2 ]
Zhang, Hongying [1 ,2 ]
Zhang, Qi [1 ,2 ]
Han, Xue [1 ,2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621000, Peoples R China
[2] Southwest Univ Sci & Technol, Sichuan Prov Key Lab Robot Special Environm, Mianyang 621000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
facial expression recognition; convolution neural network; deep learning;
D O I
10.3390/app13031968
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate expression interpretation occupies a huge proportion of human-to-human communication. The control of expressions can facilitate more convenient communication between people. Expression recognition technology has also been transformed from relatively mature laboratory-controlled research to natural scenes research. In this paper, we design a multi-channel attention network based on channel weighting for expression analysis in natural scenes. The network mainly consists of three parts: Multi-branch expression recognition feature extraction network, which combines residual network ResNet18 and ConvNeXt network ideas to improve feature extraction and uses adaptive feature fusion to build a complete network; Adaptive Channel Weighting, which designs adaptive weights in the auxiliary network for feature extraction, performs channel weighting, and highlights key information areas; and Attention module, which designs and modifies the spatial attention mechanism and increases the proportion of feature information to accelerate the acquisition of important expression feature information areas. The experimental results show that the proposed method achieves better recognition efficiency than existing algorithms on the dataset FER2013 under uncontrolled conditions, reaching 73.81%, and also achieves good recognition accuracy of 89.65% and 85.24% on the Oulu_CASIA and RAF-DB datasets, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Blind Signal Recognition Method of STBC Based on Multi-channel Convolutional Neural Network
    Gu, Yuting
    Wang, Yu
    Adebisi, Bamidele
    Guiy, Guan
    Gacanin, Haris
    Sari, Hikmet
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [22] A unified network for multi-speaker speech recognition with multi-channel recordings
    Liu, Conggui
    Inoue, Nakamasa
    Shinoda, Koichi
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1304 - 1307
  • [23] A MULTI-LAYER MULTI-CHANNEL ATTENTIVE NETWORK FOR GENDER AND AGE RECOGNITION
    Chen, Jia
    Yu, Haiping
    Kang, Yimei
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4135 - 4139
  • [24] Robust Speaker Recognition Based on Single-Channel and Multi-Channel Speech Enhancement
    Taherian, Hassan
    Wang, Zhong-Qiu
    Chang, Jorge
    Wang, DeLiang
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1293 - 1302
  • [25] ROBUST MULTI-CHANNEL SPEECH RECOGNITION USING FREQUENCY ALIGNED NETWORK
    Park, Taejin
    Kumatani, Kenichi
    Wu, Minhua
    Sundaram, Shiva
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6859 - 6863
  • [26] Multi-Channel Convolutional Neural Network for Twitter Emotion and Sentiment Recognition
    Islam, Jumayel
    Mercer, Robert E.
    Xiao, Lu
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1355 - 1365
  • [27] Cognitive Load Recognition Using Multi-channel Complex Network Method
    Shang, Jian
    Zhang, Wei
    Xiong, Jiang
    Liu, Qingshan
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 466 - 474
  • [28] Myoelectric Gesture Recognition Based on Multi-Channel Correlation Feature
    Jiang, Xi
    Li, Yanhong
    Zou, Ke
    Yuan, Xuedong
    Computer Engineering and Applications, 2023, 59 (07) : 102 - 109
  • [29] Multi-channel Classification Resonance Network
    Kim, Joonhyuk
    Park, Gyeong-Moon
    Kim, Jong-Hwan
    2019 7TH INTERNATIONAL CONFERENCE ON ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS (RITA), 2019, : 12 - 19
  • [30] Multi-Channel Neural Network for Steganalysis
    Liu, Kai
    Li, Xuan
    Zhang, Qiong
    Kang, Xiangui
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1210 - 1213