Quantum annealing: an overview

被引:49
|
作者
Rajak, Atanu [1 ]
Suzuki, Sei [2 ]
Dutta, Amit [3 ]
Chakrabarti, Bikas. K. K. [4 ,5 ]
机构
[1] Presidency Univ, Dept Phys, Kolkata 700073, India
[2] Saitama Med Univ, Dept Liberal Arts, Saitama 3500495, Japan
[3] Indian Inst Technol Kanpur, Kanpur 208016, India
[4] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 700064, India
[5] Indian Stat Inst, B T Rd 203, Kolkata 700108, India
基金
日本学术振兴会;
关键词
quantum tunnelling; transverse Ising models; quantum spin glass; p-spin models; decoherence; non-deterministic polynomial-time (NP)-complete and NP-hard problems; ISING SPIN-GLASS; TRANSVERSE-FIELD; CRITICAL-BEHAVIOR; PHASE-TRANSITION; OPTIMIZATION; DYNAMICS; POINT; MODEL; COLLOQUIUM; MECHANICS;
D O I
10.1098/rsta.2021.0417
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this review, after providing the basic physical concept behind quantum annealing (or adiabatic quantum computation), we present an overview of some recent theoretical as well as experimental developments pointing to the issues which are still debated. With a brief discussion on the fundamental ideas of continuous and discontinuous quantum phase transitions, we discuss the Kibble-Zurek scaling of defect generation following a ramping of a quantum many body system across a quantum critical point. In the process, we discuss associated models, both pure and disordered, and shed light on implementations and some recent applications of the quantum annealing protocols. Furthermore, we discuss the effect of environmental coupling on quantum annealing. Some possible ways to speed up the annealing protocol in closed systems are elaborated upon: we especially focus on the recipes to avoid discontinuous quantum phase transitions occurring in some models where energy gaps vanish exponentially with the system size.This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Quantum Technology Overview
    Ritter, Mark B.
    2019 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2019,
  • [32] An Overview of Quantum Optimization
    He J.
    Li L.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (09): : 1823 - 1834
  • [33] Quantum Condensates: An Overview
    Leggett, Anthony J.
    AFRICAN REVIEW OF PHYSICS, 2007, 1 (01): : 1 - 17
  • [34] Quantum Automata: An Overview
    Stanley Gudder
    International Journal of Theoretical Physics, 1999, 38 : 2261 - 2282
  • [35] An overview of quantum computing
    Ekert, A
    Macchiavello, C
    UNCONVENTIONAL MODELS OF COMPUTATION, 1998, : 19 - 44
  • [36] Mathematical aspects of quantum annealing
    Nishimori, Hidetoshi
    Morita, Satoshi
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2007 (IW-SMI 2007), 2008, 95 : U220 - U230
  • [37] Quantum annealing hits the barriers
    Parker, Matthew
    NATURE ELECTRONICS, 2023, 6 (9) : 647 - 647
  • [38] Quantum annealing with manufactured spins
    M. W. Johnson
    M. H. S. Amin
    S. Gildert
    T. Lanting
    F. Hamze
    N. Dickson
    R. Harris
    A. J. Berkley
    J. Johansson
    P. Bunyk
    E. M. Chapple
    C. Enderud
    J. P. Hilton
    K. Karimi
    E. Ladizinsky
    N. Ladizinsky
    T. Oh
    I. Perminov
    C. Rich
    M. C. Thom
    E. Tolkacheva
    C. J. S. Truncik
    S. Uchaikin
    J. Wang
    B. Wilson
    G. Rose
    Nature, 2011, 473 : 194 - 198
  • [39] Shortcuts to adiabaticity for quantum annealing
    Takahashi, Kazutaka
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [40] Nested quantum annealing correction
    Vinci, Walter
    Albash, Tameem
    Lidar, Daniel A.
    NPJ QUANTUM INFORMATION, 2016, 2