Improved Strength-Ductility Synergy of a CoCrNi Medium-Entropy Alloy by Ex Situ TiN Nanoparticles

被引:0
|
作者
Wang, Anjing [1 ]
Wang, Jianying [1 ]
Yang, Feipeng [1 ]
Wen, Tao [1 ]
Yang, Hailin [1 ]
Ji, Shouxun [2 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Brunel Univ London, Brunel Ctr Adv Solidificat Technol BCAST, Uxbridge UB8 3PH, Middx, England
基金
中国国家自然科学基金;
关键词
heat treatments; mechanical properties; medium-entropy alloys; microstructures; powder metallurgy; SHORT-RANGE ORDER; MECHANICAL-PROPERTIES; DEFORMATION; FRACTURE; MICROSTRUCTURE; PRECIPITATION; TITANIUM; TENSION; DESIGN;
D O I
10.1002/adem.202200939
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The introduction of ex situ reinforcement particles to increase the strength of alloys generally reduces ductility. Herein, a method to fabricate CoCrNi/TiN composite via spark plasma sintering (SPS) and rolling and annealing to achieve a superior combination of strength and ductility is presented. Under the as-SPSed condition, the CoCrNi/TiN composites exhibit the fracture strain of 41.9%, yield strength (YS) of 0.48 GPa, ultimate tensile strength (UTS) of 0.88 GPa, and hardness of 232.0 Hv. After rolling at 25 degrees C for the thickness reduction of 50%, the alloy presents fracture strain of 6.9%, YS of 1.24 GPa, UTS of 1.41 GPa, and hardness (408.9 Hv). After rolling at 25 degrees C for the thickness reduction of 50%, and annealing at 700 degrees C for 1 h, a good combination of YS of 0.77 GPa, UTS of 1.01 GPa, and fractured strain of 55.2% can be obtained in the samples. The superior strength-ductility synergy can be attributed to the refined structure, the formation of lattices defects (i.e., stacking faults [SFs] and Lomer-Cottrell Locks (LCs)), the interaction of nanotwin-TiN particles, and the concurrent process of potential grain boundary sliding accommodated by intragranular dislocation in the softer face-centered cubic (fcc) matrix.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Developing novel ultra-thin refractory medium-entropy foils with excellent strength-ductility synergy
    Guo, Sheng-Li
    Zhang, Wei
    Yan, Xue-Hui
    Wang, Guang-Zong
    He, Ke-Hang
    Zhu, Bao-Hong
    Qiu, Hao-Chen
    Wu, Shuai-Shuai
    Jiang, Wei
    RARE METALS, 2025, 44 (02) : 1380 - 1391
  • [42] Dual heterogeneous structured medium-entropy alloys showing a superior strength-ductility synergy at cryogenic temperature
    Zhang, Zihan
    Wang, Wei
    Qin, Shuang
    Yang, Muxin
    Wang, Jing
    Jiang, Ping
    Yuan, Fuping
    Wu, Xiaolei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 3262 - 3276
  • [43] Enhanced Strength-Ductility Combination in Laser Welding of CrCoNi Medium-Entropy Alloy with Ultrasonic Assistance
    Zhou, Hongmei
    Yan, Shaohua
    Zhu, Zhongyin
    METALS, 2024, 14 (09)
  • [44] Laser powder bed fusion of Al-Doped CoCrNi Medium Entropy Alloy: Microstructural mechanisms imparting high strength-ductility synergy
    Zhang, Zhengtong
    Tu, Jian
    Zhang, Xingqun
    Qiu, Yingkun
    Du, Yanbin
    Liang, Yanxiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 927
  • [45] In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy (vol 66, 103443, 2023)
    Zhou, Kexuan
    Cui, Dingcong
    Chai, Zishu
    Zhang, Yashan
    Yang, Zhongsheng
    Zhu, Chao
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    ADDITIVE MANUFACTURING, 2024, 93
  • [46] Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon
    Shang, Y. Y.
    Wu, Y.
    He, J. Y.
    Zhu, X. Y.
    Liu, S. F.
    Huang, H. L.
    An, K.
    Chen, Y.
    Jiang, S. H.
    Wang, H.
    Liu, X. J.
    Lu, Z. P.
    INTERMETALLICS, 2019, 106 : 77 - 87
  • [47] Exceptional Strength-Ductility Combinations of a CoCrNi-Based Medium-Entropy Alloy via Short/Medium-Time Annealing after Hot-Rolling
    Chen, Yongan
    Li, Dazhao
    Yan, Zhijie
    Bai, Shaobin
    Xie, Ruofei
    Sheng, Jian
    Zhang, Jian
    Li, Shuai
    Zhang, Jinzhong
    MATERIALS, 2024, 17 (19)
  • [48] Strength-ductility synergy and grain refinement mechanisms in a Co-Cr-Ni medium-entropy alloy with novel analogous harmonic structure
    Du, Shiyu
    Zhang, Tuanwei
    Jiao, Zhiming
    Zhao, Dan
    Wang, Jianjun
    Xiong, Renlong
    Kim, Hyoung Seop
    Wang, Zhihua
    SCRIPTA MATERIALIA, 2023, 235
  • [49] Achieving exceptional strength-ductility synergy in a 3D-printed CrCoNi medium-entropy alloy with machine-learning assistance
    Zhu, Yan
    Li, Yusen
    Yan, Zhongwei
    Song, Changhui
    Tian, Jindong
    Yan, Shaohua
    MATERIALS CHARACTERIZATION, 2025, 223
  • [50] Enhanced strength-ductility synergy in ferrous medium-entropy alloys via single-step hot rolling
    Liao, Yu
    Song, Yisi
    Shu, Nan
    Niu, Yunjiao
    Zhang, Hao
    Sun, Beier
    Wang, Yiwei
    Li, Chuanwei
    Gu, Jianfeng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 926