Study of localized waves for couple of the nonlinear Schrodinger dynamical equations

被引:7
|
作者
Seadawy, Aly R. [1 ]
Rizvi, Syed T. R. [2 ]
Shabbir, Sana [2 ]
Khizar, Saria [2 ]
机构
[1] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah 41411, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
来源
关键词
Optical solitons; ansatz transformations; nonlinearities; MATHEMATICAL-METHODS; SYSTEM;
D O I
10.1142/S0217979223500479
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we will use various ansatz transformations to obtain different kinds of optical solitons solutions for couple of nonlinear Schrodinger equations (NLSEs). We get bright, dark, bright in the dark (dipole), combined dark-bright (combo) and some other solitary wave solutions for quadratic-cubic quintic system in optical meta-materials (CQS-OM) having quadratic cubic nonlinearity along with NLSE with anti-cubic nonlinearity (AC) in an optical fiber. We also show our results graphically in various dimensions under different constraint conditions.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Rogue Waves in the Generalized Derivative Nonlinear Schrodinger Equations
    Yang, Bo
    Chen, Junchao
    Yang, Jianke
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 3027 - 3056
  • [42] Standing waves for nonlinear Schrodinger equations with singular potentials
    Byeon, Jaeyoung
    Wang, Zhi-Qiang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 943 - 958
  • [43] Localized Nonlinear Waves in Nonlinear Schrodinger Equation with Nonlinearities Modulated in Space and Time
    Chen, Junchao
    Li, Biao
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (12): : 728 - 734
  • [44] Stationary dark localized modes: Discrete nonlinear Schrodinger equations
    Konotop, VV
    Takeno, S
    PHYSICAL REVIEW E, 1999, 60 (01): : 1001 - 1008
  • [45] Stable standing waves of nonlinear Schrodinger equations with a general nonlinear term
    Shibata, Masataka
    MANUSCRIPTA MATHEMATICA, 2014, 143 (1-2) : 221 - 237
  • [46] Nonlinear instability of linearly unstable standing waves for nonlinear Schrodinger equations
    Georgiev, Vladimir
    Ohta, Masahito
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (02) : 533 - 548
  • [47] Localized waves in three-component coupled nonlinear Schrodinger equation
    Xu, Tao
    Chen, Yong
    CHINESE PHYSICS B, 2016, 25 (09)
  • [48] Nonlinear spin dynamics of a couple of nonlinear Schrodinger's equations by the improved form of an analytical method
    Hong, Xiao
    Nasution, Mahyuddin K. M.
    Ilhan, Onur Alp
    Manafian, Jalil
    Abotaleb, Mostafa
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) : 1438 - 1461
  • [49] One-parameter localized traveling waves in nonlinear Schrodinger lattices
    Pelinovsky, Dmitry E.
    Melvin, Thomas R. O.
    Champneys, Alan R.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 236 (01) : 22 - 43
  • [50] Solitary waves in the resonant nonlinear Schrodinger equation: Stability and dynamical properties
    Williams, F.
    Tsitoura, F.
    Horikis, T. P.
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2020, 384 (22)