Quantum effects on the synchronization dynamics of the Kuramoto model

被引:3
|
作者
Delmonte, Anna [1 ]
Romito, Alessandro [2 ]
Santoro, Giuseppe E. [1 ,3 ,4 ]
Fazio, Rosario [3 ,5 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] CNR, CNR IOM, SISSA, Ist Officina Mat, Via Bonomea 265, I-34136 Trieste, Italy
[5] Univ Napoli Federico II, Dipartimento Fis E Pancini, I-80126 Naples, Italy
基金
欧洲研究理事会;
关键词
BROWNIAN-MOTION; ENTRAINMENT;
D O I
10.1103/PhysRevA.108.032219
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Kuramoto model serves as a paradigm for describing spontaneous synchronization in a system of classical interacting rotors. In this paper, we extend this model to the quantum domain by coupling quantum interacting rotors to external baths following the Caldeira-Leggett approach. Studying the mean-field model in the overdamped limit using Feynman-Vernon theory, we show how quantum mechanics modifies the phase diagram. Specifically, we demonstrate that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it. We examine the phase transition into the synchronized phase at various temperatures, revealing that classical results are recovered at high temperatures while a quantum phase transition occurs at zero temperature. Additionally, we derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters, and examine the differences between classical and quantum behavior.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Synchronization in the Kuramoto model: A dynamical gradient network approach
    Chen, Maoyin
    Shang, Yun
    Zou, Yong
    Kurths, Juergen
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [32] Synchronization of the generalized Kuramoto model with time delay and frustration
    Zhu, Tingting
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1772 - 1798
  • [33] Fisher information of the Kuramoto model: A geometric reading on synchronization
    da Silva, V. B.
    Vieira, J. P.
    Leonel, Edson D.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 423
  • [34] A modification to the Kuramoto model to simulate epileptic seizures as synchronization
    Zavaleta-Viveros, Jose Alfredo
    Toledo, Porfirio
    Avendano-Garrido, Martha Lorena
    Escalante-Martinez, Jesus Enrique
    Lopez-Meraz, Maria-Leonor
    Ramos-Riera, Karen Paola
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 87 (01)
  • [35] ON THE SYNCHRONIZATION OF DISCRETE-TIME KURAMOTO MODEL WITH FRUSTRATION
    Zhu, Tingting
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (11) : 3233 - 3249
  • [36] Modular synchronization in complex networks with a gauge Kuramoto model
    Oh, E.
    Choi, C.
    Kahng, B.
    Kim, D.
    EPL, 2008, 83 (06)
  • [37] Asymptotic Frequency Synchronization of Kuramoto Model by Step Force
    Mao, Yanbing
    Zhang, Ziang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (08): : 2768 - 2778
  • [38] Circuit Synthesis and Electrical Interpretation of Synchronization in the Kuramoto Model
    Ochs, Karlheinz
    Michaelis, Dennis
    Roggendorf, Julian
    2019 30TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2019,
  • [39] Modular Synchronization in Complex Network with a Gauge Kuramoto Model
    Choi, C.
    Oh, E.
    Kahng, B.
    Kim, D.
    COMPLEX SCIENCES, PT 1, 2009, 4 : 429 - 434
  • [40] Remarks on the slow relaxation for the fractional Kuramoto model for synchronization
    Ha, Seung-Yeal
    Jung, Jinwook
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)