High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning

被引:2
|
作者
Zalik, Mitja [1 ]
Mongus, Domen [1 ]
Lukac, Niko [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor, Slovenia
关键词
Deep learning; Fully convolutional neural network; LiDAR data; Digital elevation model; Solar energy; Solar potential; GENERATION; ALGORITHM; MODEL; LIDAR;
D O I
10.1016/j.renene.2023.119868
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatiotemporal assessment of solar potential is one of the most promising solutions to find suitable locations for future photovoltaic systems' placement. However, accurate assessment of solar potential on large areas can be challenging due to missing data or computational complexity. In this paper, a fully convolutional neural network based method for high-resolution spatiotemporal assessment of solar potential by using remote sensing data is presented. The method is trained and validated on the area of 32 km2 of the Maribor city, Slovenia, and tested on the 6 different locations in Slovenia and Germany. The proposed method was tested against the simulation algorithm, which utilized isotropic Liu Jordan diffuse model or anisotropic Perez model with sky view factor based shading. On average, a normalized root mean square error (NRMSE) of 6.06% and mean absolute percentage error (MAPE) of 4.29% was achieved in test locations against the simulation based on Liu -Jordan model. When training the fully convolutional neural network models against the ground truth, generated with more advanced Perez diffuse model, the average NRMSE was 8.37% and MAPE of 10.90% was achieved across all test locations. Additionally, it was shown that the proposed method can assess solar potential in high-resolution from the input in lower resolution with higher accuracy than the simulation algorithm, while being up to 1500-times faster.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Wuhan Dataset: A High-Resolution Dataset of Spatiotemporal Fusion for Remote Sensing Images
    Zhang, Xingjian
    Xie, Linglin
    Li, Shuang
    Lei, Fan
    Cao, Li
    Li, Xinghua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [42] High-resolution optical remote sensing imagery change detection through deep transfer learning
    Larabi, Mohammed El Amin
    Chaib, Souleyman
    Bakhti, Khadidja
    Hasni, Kamel
    Bouhlala, Mohammed Amine
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [43] Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
    Li, Yansheng
    Chen, Wei
    Zhang, Yongjun
    Tao, Chao
    Xiao, Rui
    Tan, Yihua
    REMOTE SENSING OF ENVIRONMENT, 2020, 250
  • [44] Learning to Semantically Segment High-Resolution Remote Sensing Images
    Nogueira, Keiller
    Dalla Mura, Mauro
    Chanussot, Jocelyn
    Schwartz, William Robson
    dos Santos, Jefersson A.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3566 - 3571
  • [45] Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning
    Yifu Zeng
    Yi Guo
    Jiayi Li
    Neural Computing and Applications, 2022, 34 : 2691 - 2706
  • [46] Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning
    Zeng, Yifu
    Guo, Yi
    Li, Jiayi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 2691 - 2706
  • [47] Building Change Detection in High-Resolution Remote-Sensing Images Based on Deep Learning
    Han Xing
    Han Ling
    Li Liangzhi
    Li Huihui
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (10)
  • [48] Estimation of Forest Carbon Stock in South Korea Using Machine Learning with High-Resolution Remote Sensing Data
    Shin, Jaewon
    Jeong, Sujong
    Chang, Dongyeong
    ATMOSPHERE-KOREA, 2023, 33 (01): : 61 - 72
  • [49] Optimisation of global grids for high-resolution remote sensing data
    Bauer-Marschallinger, Bernhard
    Sabel, Daniel
    Wagner, Wolfgang
    COMPUTERS & GEOSCIENCES, 2014, 72 : 84 - 93
  • [50] Optimisation of global grids for high-resolution remote sensing data
    Bauer-Marschallinger, Bernhard, 1600, Elsevier Ltd (72):