Convolutional Neural Network-Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism

被引:4
|
作者
Tang, Chaolin [1 ]
Zhang, Dong [2 ]
Tian, Qichuan [1 ,3 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[3] Beijing Key Lab Robot B & Funct Res, Beijing 100044, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 22期
关键词
facial expression recognition; attention mechanism; sliding window; Bi-GRU; EMOTION RECOGNITION; MODEL;
D O I
10.3390/app132212418
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The relationships among different subregions in facial images and their varying contributions to facial expression recognition indicate that using a fixed subregion weighting scheme would result in a substantial loss of valuable information. To address this issue, we propose a facial expression recognition network called BGA-Net, which combines bidirectional gated recurrent units (BiGRUs) with an attention mechanism. Firstly, a convolutional neural network (CNN) is employed to extract feature maps from facial images. Then, a sliding window cropping strategy is applied to divide the feature maps into multiple subregions. The BiGRUs are utilized to capture the dependencies among these subregions. Finally, an attention mechanism is employed to adaptively focus on the most discriminative regions. When evaluated on CK+, FER2013, and JAFFE datasets, our proposed method achieves promising results.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Facial Expression Recognition Method Embedded with Attention Mechanism Residual Network
    Zhong, Rui
    Jiang, Bin
    Li, Nanxing
    Cui, Xiaomei
    Computer Engineering and Applications, 2023, 59 (11) : 88 - 97
  • [32] Convolutional Neural Network-Based Bidirectional Gated Recurrent Unit-Additive Attention Mechanism Hybrid Deep Neural Networks for Short-Term Traffic Flow Prediction
    Liu, Song
    Lin, Wenting
    Wang, Yue
    Yu, Dennis Z.
    Peng, Yong
    Ma, Xianting
    SUSTAINABILITY, 2024, 16 (05)
  • [33] DEEP CONVOLUTIONAL RECURRENT NEURAL NETWORK WITH ATTENTION MECHANISM FOR ROBUST SPEECH EMOTION RECOGNITION
    Huang, Che-Wei
    Narayanan, Shrikanth
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 583 - 588
  • [34] Facial Expression Recognition Using Convolutional Neural Network
    Agrawal, Ved
    Bamb, Chirag
    Mata, Harsh
    Dhunde, Harshal
    Hablani, Ramchand
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 267 - 278
  • [35] Facial Expression Recognition Based on Convolutional Neural Network
    Zhou Yue
    Feng Yanyan
    Zeng Shangyou
    Pan Bing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 410 - 413
  • [36] A Novel Convolutional Neural Network for Facial Expression Recognition
    Li, Jing
    Mi, Yang
    Yu, Jiahui
    Ju, Zhaojie
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II, 2019, 1006 : 310 - 320
  • [37] Deep Convolutional Neural Network for Facial Expression Recognition
    Zhai, Yikui
    Liu, Jian
    Zeng, Junying
    Piuri, Vincenzo
    Scotti, Fabio
    Ying, Zilu
    Xu, Ying
    Gan, Junying
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 211 - 223
  • [38] Facial Expression Recognition Using Convolutional Neural Network
    Gan, Yijun
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2018), 2018,
  • [39] Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism
    Prabhu, K.
    SathishKumar, S.
    Sivachitra, M.
    Dineshkumar, S.
    Sathiyabama, P.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (01): : 415 - 426
  • [40] Gated recurrent unit and temporal convolutional network with soft thresholding and attention mechanism for tool wear prediction
    Li, Binglin
    Li, Jun
    Wu, Xingsheng
    Tang, Haiquan
    MEASUREMENT, 2025, 240