Annealing of a (Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2)C high-entropy ceramic up to 2100 °C: In-situ removal of oxide impurities and microstructural modification

被引:3
|
作者
Guo, Huifen [1 ]
Moskovskikh, Dmitry [2 ]
Yudin, Sergey [2 ,3 ]
Cheng, Zanlin [1 ]
Zou, Weiheng [1 ]
Volodko, Sergey [2 ]
Zhang, Chengyu [1 ]
机构
[1] Northwestern Polytech Univ, NPU SAS Joint Res Ctr, Sch Mat Sci & Engn, Xian 710072, Shaanxi, Peoples R China
[2] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[3] Moscow Polytech Univ, 38,B Semenovskaya St, Moscow, Russia
关键词
(Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2)C; Annealing; Impurity; Microstructure; Mechanical properties; HIGH-TEMPERATURE SYNTHESIS; COMBUSTION SYNTHESIS; CARBIDE CERAMICS; INDENTATION; FABRICATION; COMPOSITES;
D O I
10.1016/j.ceramint.2023.09.115
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A (Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2)C high-entropy ceramic (HEC) prepared by the combination of self-propagation high-temperature synthesis (SHS) and spark plasma sintering (SPS), was annealed at 2000 degrees C and 2100 degrees C in order to remove the impurities and modify the microstructure. The microstructure and phase composition of the HECs were characterized by X-ray diffraction, scanning electron microscopy, and transmission electronic microscopy. Moreover, the mechanical properties were examined by nanoindentation. It is found that the as-prepared HEC contains the impurities of (Hf, Zr)O2 and amorphous carbon. The oxide and amorphous carbon can be in-situ removed by further carbothermal reduction reaction during the annealing, followed by dissolution of the reduction products into the HEC phase. In other words, the heat treatment can significantly improve the microstructure of the HEC by the removal of impurity and uniform distribution of the compositional elements. In addition, the annealing at 2000 degrees C and 2100 degrees C enhance the mechanical properties of the HEC. The nano-hardness, elastic modulus and fracture toughness are 34.04 +/- 1.49 GPa, 525.82 +/- 14.51 GPa and 3.60 +/- 0.55 MPa m1/2, respectively, for the HEC annealed at 2100 degrees C for 1 h, which are 1.13-2.08 times of the as-prepared HEC.
引用
收藏
页码:37872 / 37880
页数:9
相关论文
共 50 条
  • [21] Densifying (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics by two-step pressureless sintering
    Yu, Duo
    Zhang, Buhao
    Yin, Jie
    Wang, Yichen
    Liu, Xuejian
    Reece, Michael J.
    Huang, Zhengren
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (01) : 76 - 81
  • [22] High porosity and low thermal conductivity high entropy(Zr0.2Hf0.2Ti(0.2Nb0.2Ta0.2)C
    Heng Chen
    Huimin Xiang
    Fu-Zhi Dai
    Jiachen Liu
    Yiming Lei
    Jie Zhang
    Yanchun Zhou
    JournalofMaterialsScience&Technology, 2019, 35 (08) : 1700 - 1705
  • [23] Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential
    Pikalova, N. S.
    Balyakin, I. A.
    Yuryev, A. A.
    Rempel, A. A.
    DOKLADY PHYSICAL CHEMISTRY, 2024, 514 (01) : 9 - 14
  • [24] Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air
    Ye, Beilin
    Wen, Tongqi
    Liu, Da
    Chu, Yanhui
    CORROSION SCIENCE, 2019, 153 : 327 - 332
  • [25] Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase
    Lu, Kuan
    Liu, Ji-Xuan
    Wei, Xiao-Feng
    Bao, Weichao
    Wu, Yue
    Li, Fei
    Xu, Fangfang
    Zhang, Guo-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (05) : 1839 - 1847
  • [26] Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000?C
    Ni, Na
    Ding, Qi
    Shi, Yinchun
    Jiang, Juan
    Li, Ling
    Zhang, Ruiji
    Liu, Xuanzhen
    Fan, Yuchi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2306 - 2319
  • [27] Oxidation behavior of high-entropy (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic with 20% SiC addition
    Guo, Ruru
    Li, Zhijian
    Li, Lu
    Zheng, Ruixiao
    Ma, Chaoli
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (08) : 5181 - 5189
  • [28] Pressure-driven grain fusion and mechanical properties improvement of high-entropy (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C ceramics
    Chen, Wang
    Shen, Pengfei
    Li, Wei
    Ma, Shuailing
    Lian, Min
    Wei, Xinmiao
    Dan, Yaqian
    Zhao, Xingbin
    Qi, Mengyao
    Cui, Tian
    Riedel, Ralf
    MATERIALS & DESIGN, 2025, 253
  • [29] Oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Ti 0.2 Me 0.2 )B 2 (Me=Nb,Cr) high-entropy ceramics at 1200 ° C in air
    Zhang, Yan
    Ni, Bo-Yu
    Chai, Yan-Fu
    Guo, Wei-Ming
    Zhang, Tian-Qi
    Yao, Wei-Feng
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (04)
  • [30] Mechanical properties and deformation mechanisms of (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C high-entropy ceramics characterized by nanoindentation and scratch tests
    Jin, Xiaochao
    Hou, Cheng
    Zhao, Yuxiang
    Wang, Zhuoran
    Wang, Jierui
    Fan, Xueling
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 35445 - 35451