Deep Learning to Optimize Magnetic Resonance Imaging Prediction of Motor Outcomes After Hypoxic-Ischemic Encephalopathy

被引:2
|
作者
Vesoulis, Zachary A. [1 ,8 ]
Trivedi, Shamik B. [2 ]
Morris, Hallie F. [3 ]
Mckinstry, Robert C. [4 ]
Li, Yi [5 ]
Mathur, Amit M. [6 ]
Wu, Yvonne W. [7 ]
机构
[1] Washington Univ, Dept Pediat, Div Newborn Med, St Louis, MO 63110 USA
[2] Northwestern Univ, Dept Pediat, Div Neonatol, Chicago, IL USA
[3] Childrens Natl Med Ctr, Div Neonatol, Washington, DC USA
[4] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[5] UCSF, Dept Radiol, San Francisco, CA USA
[6] St Louis Univ, Dept Pediat, Div Neonatol, St Louis, MO USA
[7] UCSF, Dept Neurol, San Francisco, CA USA
[8] Washington Univ, Newborn Med, 1 Childrens Pl,Box 8116, St Louis, MO 63110 USA
关键词
HIE; MRI; Machine learning; Outcome; Neonatal; PERINATAL ASPHYXIA; INVOLVEMENT; HYPOTHERMIA; PATTERNS; INJURY;
D O I
10.1016/j.pediatrneurol.2023.09.001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Magnetic resonance imaging (MRI) is the gold standard for outcome prediction after hypoxic-ischemic encephalopathy (HIE). Published scoring systems contain duplicative or conflicting elements. Methods: Infants >= 36 weeks gestational age (GA) with moderate to severe HIE, therapeutic hypothermia treatment, and T1/T2/diffusion-weighted imaging were identified. Adverse motor outcome was defined as Bayley-III motor score <85 or Alberta Infant Motor Scale <10(th) centile at 12 to 24 months. MRIs were scored using a published scoring system. Logistic regression (LR) and gradient-boosted deep learning (DL) models quantified the importance of clinical and imaging features. The cohort underwent 80/20 train/test split with fivefold cross validation. Feature selection eliminated low-value features. Results: A total of 117 infants were identified with mean GA = 38.6 weeks, median cord pH = 7.01, and median 10-minute Apgar = 5. Adverse motor outcome was noted in 23 of 117 (20%). Putamen/globus pallidus injury on T1, GA, and cord pH were the most informative features. Feature selection improved model accuracy from 79% (48-feature MRI model) to 85% (three-feature model). The three-feature DL model had superior performance to the best LR model (area under the receiver-operator curve 0.69 versus 0.75). Conclusions: The parsimonious DL model predicted adverse HIE motor outcomes with 85% accuracy using only three features (putamen/globus pallidus injury on T1, GA, and cord pH) and outperformed LR. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [21] Head growth in infants with hypoxic-ischemic encephalopathy: Correlation with neonatal magnetic resonance imaging
    Mercuri, E
    Ricci, D
    Cowan, FM
    Lessing, D
    Frisone, MF
    Haataja, L
    Counsell, SJ
    Dubowitz, LM
    Rutherford, MA
    PEDIATRICS, 2000, 106 (02) : 235 - 243
  • [22] Cerebral Autoregulation and Conventional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy
    Carrasco, Melisa
    Perin, Jamie
    Jennings, Jacky M.
    Parkinson, Charlamaine
    Gilmore, Maureen M.
    Chavez-Valdez, Raul
    Massaro, An N.
    Koehler, Raymond C.
    Northington, Frances J.
    Tekes, Aylin
    Lee, Jennifer K.
    PEDIATRIC NEUROLOGY, 2018, 82 : 36 - 43
  • [23] Prediction of feeding difficulties in neonates with hypoxic-ischemic encephalopathy using magnetic resonance imaging-derived radiomics features
    Xia, Yaqin
    Yang, Mingshu
    Qian, Tianyang
    Zhou, Jiayu
    Bai, Mei
    Luo, Siqi
    Lu, Chaogang
    Zhu, Yinghao
    Wang, Laishuan
    Qiao, Zhongwei
    PEDIATRIC RADIOLOGY, 2024, 54 (12) : 2036 - 2045
  • [24] Prognostic Utility of Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy Substudy of a Randomized Trial
    Cheong, Jeanie L. Y.
    Coleman, Lee
    Hunt, Rod W.
    Lee, Katherine J.
    Doyle, Lex W.
    Inder, Terrie E.
    Jacobs, Susan E.
    ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2012, 166 (07): : 634 - 640
  • [25] Serial magnetic resonance diffusion and hemodynamic imaging in a neonatal rabbit model of hypoxic-ischemic encephalopathy
    D'Arceuil, HE
    de Crespigny, AJ
    Röther, J
    Moseley, M
    Rhine, W
    NMR IN BIOMEDICINE, 1999, 12 (08) : 505 - 514
  • [26] Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates
    Wintermark, Pia
    Moessinger, Adrien C.
    Gudinchet, Francois
    Meuli, Reto
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (04) : 1019 - 1025
  • [27] Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy
    van Schie, P. E. M.
    Becher, J. G.
    Dalimeijer, A. J.
    Barkhof, F.
    Weissenbruch, M. M.
    Vermeulen, R. J.
    NEUROPEDIATRICS, 2007, 38 (02) : 71 - 77
  • [28] Predictive Models of Neurodevelopmental Outcomes After Neonatal Hypoxic-Ischemic Encephalopathy
    Peeples, Eric S.
    Rao, Rakesh
    Dizon, Maria L., V
    Johnson, Yvette R.
    Joe, Priscilla
    Flibotte, John
    Hossain, Tanzeema
    Smith, Danielle
    Hamrick, Shannon
    DiGeronimo, Robert
    Natarajan, Girija
    Lee, Kyong-Soon
    Yanowitz, Toby D.
    Mietzsch, Ulrike
    Wu, Tai-Wei
    Maitre, Nathalie L.
    Pallotto, Eugenia K.
    Speziale, Mark
    Mathur, Amit M.
    Zaniletti, Isabella
    Massaro, An
    PEDIATRICS, 2021, 147 (02)
  • [29] Seizures and Magnetic Resonance Imaging-Detected Brain Injury in Newborns Cooled for Hypoxic-Ischemic Encephalopathy
    Glass, Hannah C.
    Nash, Kendall B.
    Bonifacio, Sonia L.
    Barkovich, A. James
    Ferriero, Donna M.
    Sullivan, Joseph E.
    Cilio, Maria Roberta
    JOURNAL OF PEDIATRICS, 2011, 159 (05): : 731 - U1
  • [30] Prognostic Value of Brain Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy: A Meta-analysis
    Sanchez Fernandez, Ivan
    Leon Morales-Quezada, J.
    Law, Samuel
    Kim, Paggie
    JOURNAL OF CHILD NEUROLOGY, 2017, 32 (13) : 1065 - 1073