Deep Learning to Optimize Magnetic Resonance Imaging Prediction of Motor Outcomes After Hypoxic-Ischemic Encephalopathy

被引:2
|
作者
Vesoulis, Zachary A. [1 ,8 ]
Trivedi, Shamik B. [2 ]
Morris, Hallie F. [3 ]
Mckinstry, Robert C. [4 ]
Li, Yi [5 ]
Mathur, Amit M. [6 ]
Wu, Yvonne W. [7 ]
机构
[1] Washington Univ, Dept Pediat, Div Newborn Med, St Louis, MO 63110 USA
[2] Northwestern Univ, Dept Pediat, Div Neonatol, Chicago, IL USA
[3] Childrens Natl Med Ctr, Div Neonatol, Washington, DC USA
[4] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[5] UCSF, Dept Radiol, San Francisco, CA USA
[6] St Louis Univ, Dept Pediat, Div Neonatol, St Louis, MO USA
[7] UCSF, Dept Neurol, San Francisco, CA USA
[8] Washington Univ, Newborn Med, 1 Childrens Pl,Box 8116, St Louis, MO 63110 USA
关键词
HIE; MRI; Machine learning; Outcome; Neonatal; PERINATAL ASPHYXIA; INVOLVEMENT; HYPOTHERMIA; PATTERNS; INJURY;
D O I
10.1016/j.pediatrneurol.2023.09.001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Magnetic resonance imaging (MRI) is the gold standard for outcome prediction after hypoxic-ischemic encephalopathy (HIE). Published scoring systems contain duplicative or conflicting elements. Methods: Infants >= 36 weeks gestational age (GA) with moderate to severe HIE, therapeutic hypothermia treatment, and T1/T2/diffusion-weighted imaging were identified. Adverse motor outcome was defined as Bayley-III motor score <85 or Alberta Infant Motor Scale <10(th) centile at 12 to 24 months. MRIs were scored using a published scoring system. Logistic regression (LR) and gradient-boosted deep learning (DL) models quantified the importance of clinical and imaging features. The cohort underwent 80/20 train/test split with fivefold cross validation. Feature selection eliminated low-value features. Results: A total of 117 infants were identified with mean GA = 38.6 weeks, median cord pH = 7.01, and median 10-minute Apgar = 5. Adverse motor outcome was noted in 23 of 117 (20%). Putamen/globus pallidus injury on T1, GA, and cord pH were the most informative features. Feature selection improved model accuracy from 79% (48-feature MRI model) to 85% (three-feature model). The three-feature DL model had superior performance to the best LR model (area under the receiver-operator curve 0.69 versus 0.75). Conclusions: The parsimonious DL model predicted adverse HIE motor outcomes with 85% accuracy using only three features (putamen/globus pallidus injury on T1, GA, and cord pH) and outperformed LR. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [1] MAGNETIC-RESONANCE-IMAGING OF NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY
    MCARDLE, CB
    MEHTA, SD
    KEENEY, SE
    HAYDEN, CK
    RICHARDSON, CJ
    KULKARNI, MV
    PEDIATRIC RADIOLOGY, 1987, 17 (04) : 336 - 336
  • [2] Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy
    Onda, Kengo
    Chavez-Valdez, Raul
    Graham, Ernest M.
    Everett, Allen D.
    Northington, Frances J.
    Oishi, Kenichi
    DEVELOPMENTAL NEUROSCIENCE, 2024, 46 (01) : 55 - 68
  • [3] SERIAL MAGNETIC-RESONANCE-IMAGING IN NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY
    BYRNE, P
    WELCH, R
    JOHNSON, MA
    DARRAH, J
    PIPER, M
    JOURNAL OF PEDIATRICS, 1990, 117 (05): : 694 - 700
  • [4] Magnetic Resonance Imaging in Hypoxic-Ischemic Encephalopathy Still a Cool Test
    Chau, Vann
    Poskitt, Kenneth John
    Miller, Steven Paul
    ARCHIVES OF PEDIATRICS & ADOLESCENT MEDICINE, 2012, 166 (07): : 669 - 671
  • [5] MAGNETIC-RESONANCE (MR) IMAGING OF NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY
    MCARDLE, CB
    RICHARDSON, CJ
    KEENEY, SE
    ADCOCK, EW
    KULKARNI, MV
    HAYDEN, CK
    AMPARO, EG
    PEDIATRIC RESEARCH, 1987, 21 (04) : A368 - A368
  • [6] Quantitative Cranial Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy
    Mulkey, Sarah B.
    Yap, Vivien L.
    Swearingen, Christopher J.
    Riggins, Melissa S.
    Kaiser, Jeffrey R.
    Schaefer, G. Bradley
    PEDIATRIC NEUROLOGY, 2012, 47 (02) : 101 - 108
  • [7] Magnetic Resonance Spectroscopy of Hypoxic-Ischemic Encephalopathy After Cardiac Arrest
    Lee, Jong Woo
    Sreepada, Lasya P.
    Bevers, Matthew B.
    Li, Karen
    Scirica, Benjamin M.
    da Silva, Danuzia Santana
    Henderson, Galen, V
    Bay, Camden
    Lin, Alexander P.
    NEUROLOGY, 2022, 98 (12) : E1226 - E1237
  • [8] Relationship between electroencephalography and magnetic resonance imaging findings after hypoxic-ischemic encephalopathy at term
    El-Ayouty, Mostafa
    Abdel-Hady, Hesham
    El-Mogy, Sabry
    Zaghlol, Hamed
    El-Beltagy, Mohamed
    Aly, Hany
    AMERICAN JOURNAL OF PERINATOLOGY, 2007, 24 (08) : 467 - 473
  • [9] Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy
    Ward, P
    Counsell, S
    Allsop, J
    Cowan, F
    Shen, YJ
    Edwards, D
    Rutherford, M
    PEDIATRICS, 2006, 117 (04) : E619 - E630
  • [10] MAGNETIC-RESONANCE SPECTROSCOPY IN HYPOXIC-ISCHEMIC ENCEPHALOPATHY
    YOUNKIN, DP
    CLINICAL AND INVESTIGATIVE MEDICINE, 1993, 16 (02): : 115 - 121