The Zero Limit of Thermal Diffusivity for the 2D Density-Dependent Boussinesq Equations

被引:0
|
作者
Ye, Xia [1 ]
Xu, Yanxia [1 ]
Wang, Zejia [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
density-dependent Boussinesq equation; zero thermal diffusivity; convergence rate; boundary layer; GLOBAL WELL-POSEDNESS; REGULARITY;
D O I
10.1007/s10473-023-0420-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations. It is shown that the solutions of the Boussinesq equations converge to those of zero thermal diffusivity Boussinesq equations as the thermal diffusivity tends to zero, and the convergence rate is established. In addition, we prove that the boundary-layer thickness is of the value & delta;(k) = k(& alpha;) with any & alpha; & ISIN; (0, 1/4) for a small diffusivity coefficient k > 0, and we also find a function to describe the properties of the boundary layer.
引用
收藏
页码:1800 / 1818
页数:19
相关论文
共 50 条
  • [21] Stability of the Couette Flow for a 2D Boussinesq System Without Thermal Diffusivity
    Nader Masmoudi
    Belkacem Said-Houari
    Weiren Zhao
    Archive for Rational Mechanics and Analysis, 2022, 245 : 645 - 752
  • [22] Stability of the Couette Flow for a 2D Boussinesq System Without Thermal Diffusivity
    Masmoudi, Nader
    Said-Houari, Belkacem
    Zhao, Weiren
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 245 (02) : 645 - 752
  • [23] Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity
    Li, Dong
    Xu, Xiaojing
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (03) : 255 - 265
  • [24] Global well-posedness for the 2D Boussinesq equations with zero viscosity
    Zhou, Daoguo
    Li, Zilai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) : 1072 - 1079
  • [25] 2D Voigt Boussinesq Equations
    Mihaela Ignatova
    Journal of Mathematical Fluid Mechanics, 2024, 26
  • [26] 2D Voigt Boussinesq Equations
    Ignatova, Mihaela
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (01)
  • [27] MODELING OF 2D DENSITY-DEPENDENT FLOW AND TRANSPORT IN THE SUBSURFACE
    Cheng, Jing-Ru
    Strobl, Robert O.
    Yeh, Gour-Tsyh
    Lin, Hsin-Chi
    Choi, Woo Hee
    JOURNAL OF HYDROLOGIC ENGINEERING, 1998, 3 (04) : 248 - 257
  • [28] Persistence of regularity for the viscous Boussinesq equations with zero diffusivity
    Hu, Weiwei
    Kukavica, Igor
    Ziane, Mohammed
    ASYMPTOTIC ANALYSIS, 2015, 91 (02) : 111 - 124
  • [29] Global Regularity of the 2D Density-Dependent MHD with Vacuum
    Liu, Yang
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [30] Density-dependent pair interactions in 2D colloidal suspensions
    Brunner, M
    Bechinger, C
    Strepp, W
    Lobaskin, V
    von Grünberg, HH
    EUROPHYSICS LETTERS, 2002, 58 (06): : 926 - 932