Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study

被引:13
|
作者
Ng, Matthew [1 ,2 ]
Guo, Fumin [1 ,2 ,3 ]
Biswas, Labonny [4 ]
Petersen, Steffen E. E. [5 ,6 ]
Piechnik, Stefan K. K. [7 ]
Neubauer, Stefan [7 ]
Wright, Graham [1 ,2 ]
机构
[1] Univ Toronto, Sunnybrook Res Inst, Phys Sci Platform, Toronto, ON M4N 3M5, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON M4N 3M5, Canada
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect & Biomed Engn, Wuhan 430074, Hubei, Peoples R China
[4] Sunnybrook Res Inst, Phys Sci Platform, Toronto, ON, Canada
[5] Queen Mary Univ London, William Harvey Res Inst, NIHR Barts Biomed Res Ctr, London, England
[6] Barts Hlth NHS Trust, St Bartholomews Hosp, Barts Heart Ctr, London, England
[7] Univ Oxford, Oxford NIHR Biomed Res Ctr, Radcliffe Dept Med, Div Cardiovasc Med, Oxford, England
基金
英国医学研究理事会; 加拿大健康研究院;
关键词
Cardiac MRI segmentation; segmentation quality control; Bayesian neural networks; uncertainty;
D O I
10.1109/TBME.2022.3232730
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31-48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75-78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
引用
收藏
页码:1955 / 1966
页数:12
相关论文
共 50 条
  • [31] Automatic segmentation of cardiac MRI
    Gering, DT
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 1, 2003, 2878 : 524 - 532
  • [32] Uncertainty-Aware Training of Neural Networks for Selective Medical Image Segmentation
    Ding, Yukun
    Liu, Jinglan
    Xu, Xiaowei
    Huang, Meiping
    Zhuang, Jian
    Xiong, Jinjun
    Shi, Yiyu
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 156 - 173
  • [33] Uncertainty Estimation in Deep Neural Networks for Point Cloud Segmentation in Factory Planning
    Petschnigg, Christina
    Pilz, Juergen
    MODELLING, 2021, 2 (01): : 1 - 17
  • [34] The Effect of Subject Age on Semantic Segmentation Neural Network Performance in Cardiac MRI
    Moody, A. J.
    Li, J.
    Cox, L. A.
    Clarke, G. D.
    Musi, N.
    MEDICAL PHYSICS, 2024, 51 (10) : 7843 - 7844
  • [35] Segmentation Neural Network Incorporating Scale-Space in the Application of Cardiac MRI
    Kim, Hyo-Hun
    Hong, Byung-Woo
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (07) : 1494 - 1505
  • [36] Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
    Jacobsen, Felicia Ly
    Hicks, Steven A.
    Halvorsen, Pal
    Riegler, Michael A.
    2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2022, : 44 - 49
  • [37] TOWARDS A BENCHMARK EO SEMANTIC SEGMENTATION DATASET FOR UNCERTAINTY QUANTIFICATION
    Wasif, Dawood
    Wang, Yuanyuan
    Shahzad, Muhammad
    Triebel, Rudolph
    Zhu, Xiao Xiang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5018 - 5021
  • [38] Right ventricle segmentation from cardiac MRI: A collation study
    Petitjean, Caroline
    Zuluaga, Maria A.
    Bai, Wenjia
    Dacher, Jean-Nicolas
    Grosgeorge, Damien
    Caudron, Jerome
    Ruan, Su
    Ben Ayed, Ismail
    Cardoso, M. Jorge
    Chen, Hsiang-Chou
    Jimenez-Carretero, Daniel
    Ledesma-Carbayo, Maria J.
    Davatzikos, Christos
    Doshi, Jimit
    Erus, Guray
    Maier, Oskar M. O.
    Nambakhsh, Cyrus M. S.
    Ou, Yangming
    Ourselin, Sebastien
    Peng, Chun-Wei
    Peters, Nicholas S.
    Peters, Terry M.
    Rajchi, Martin
    Rueckert, Daniel
    Santos, Andres
    Shi, Wenzhe
    Wang, Ching-Wei
    Wang, Haiyan
    Yuan, Jing
    MEDICAL IMAGE ANALYSIS, 2015, 19 (01) : 187 - 202
  • [39] BC-MRI-SEG: A Breast Cancer MRI Tumor Segmentation Benchmark
    Bilic, Anthony
    Chen, Chen
    2024 IEEE 12TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS, ICHI 2024, 2024, : 674 - 678
  • [40] PREDICTION BENCHMARK OF ARTIFICIAL NEURAL NETWORKS
    Samek, David
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 621 - 622