Aerogel of chitosan/graphene oxide loaded Ru-CoP as a monolithic catalyst for hydrogen generation via NaBH4 hydrolysis

被引:7
|
作者
Wang, Chenchen [1 ]
Cheng, Lei [2 ]
Ye, Si [1 ]
Yan, Puxuan [1 ]
Sun, Lixian [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guilin 541004, Peoples R China
关键词
Aerogel; Transition metal phosphide; Monolithic catalyst; NaBH4; hydrolysis; SODIUM-BOROHYDRIDE; ARRAYS; ELECTROCATALYST; NANOCATALYSTS; PERFORMANCE; EFFICIENT;
D O I
10.1016/j.jallcom.2023.169994
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Powder type catalysts aren't often easily recycled after use and resulted in water pollution for hydrogen production by NaBH4 hydrolysis. Based on this, Ru-CoP is firstly anchored on the surface of graphene oxide (GO) by in-situ growth of ZIF-67, water etching, phosphating and loading Ru, then a novel composite aerogel-type catalyst is fabricated with chitosan (CS), GO and Ru-CoP@GO by the facile freeze-drying method. The results show that the hydrogen generation rate (HGR) of Ru-CoP@GO is 7200mLmin1 g 1 , catalyst and the activation energy is 47.7 kJ mol-1, which is not only the sheet catalyst with high catalytic perfor- mance, but also the excellent filler for composite aerogel, attributed to the strong interaction between Ru and Co species. Meanwhile, by regulating the amounts of CS, GO and Ru-CoP@GO, the loss rate of Ru- CoP@GO/CS aerogel is only 23% at the hydrogen generation rate (4712mLmin 1 g1 ) after five cycles of catalyst catalytic testing, which is due to structural coupling action and the formation of amide bond between Ru- CoP@GO, CS and GO, demonstrating an excellent structural stability. This work provides a precise and controllable strategy for the development of monolithic catalysts.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimizing preparation of carbon supported cobalt catalyst for hydrogen generation from NaBH4 hydrolysis
    Niu, Weiling
    Ren, Dengbo
    Han, Yuanyuan
    Wu, Yanjun
    Gou, Xinglong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 543 : 159 - 166
  • [22] Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst
    Li, Qiming
    Kim, Hern
    FUEL PROCESSING TECHNOLOGY, 2012, 100 : 43 - 48
  • [23] Hydrogen Generation from NaBH4 Methanolysis with Ru/AC Catalyst Synthesized by Microwave Reduction Method
    Yildiz, Derya
    WASTE AND BIOMASS VALORIZATION, 2024, 15 (07) : 4061 - 4070
  • [24] NiCo2O4 hollow sphere as an efficient catalyst for hydrogen generation by NaBH4 hydrolysis
    Jadhav, Amol R.
    Bandal, Harshad A.
    Kim, Hern
    MATERIALS LETTERS, 2017, 198 : 50 - 53
  • [25] Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co–Mo–B alloy supported on reduced graphene oxide
    Wang Lei
    Huiming Jin
    Jichen Gao
    Yuerong Chen
    Journal of Materials Research, 2021, 36 : 4154 - 4168
  • [26] Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: A kinetic study
    Patel, N.
    Fernandes, R.
    Miotello, A.
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 411 - 420
  • [27] Highly efficient acid-treated cobalt catalyst for hydrogen generation from NaBH4 hydrolysis
    Akdim, O.
    Demirci, U. B.
    Miele, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) : 4780 - 4787
  • [28] Study of Catalytic Hydrolysis of Alkaline NaBH4 Solution by Ru/Ni Foam Catalyst
    Leu, J. H.
    Su, Ay
    Huang, Z. M.
    Liu, Y. C.
    Lin, Chun-Yuan
    APPLICATION OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 236-238 : 422 - +
  • [29] Fabrication of chitosan supported copper nano catalyst for the hydrogen gas production through methanolysis and hydrolysis of NaBH4
    Akbar, Sajjad
    Qureshi, Muhammad Nasimullah
    Khan, Shahid Ali
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 101 : 313 - 322
  • [30] Biochar-Based Catalyst Derived from Corn Husk Waste for Efficient Hydrogen Generation via NaBH4 Hydrolysis
    Lopez, Melany Alejandra Ruiz
    Fajardo, Humberto Vieira
    Ferreira, Guilherme Max Dias
    de Souza, Thamiris Ferreira
    Park, Vinicius Novaes
    dos Santos, Aysha Fernanda Soares Menezes
    Rodrigues, Thenner Silva
    Ramos, Luka Duarte
    Ferreira, Gabriel Max Dias
    WASTE AND BIOMASS VALORIZATION, 2024,