CALABI-YAU METRICS WITH CONICAL SINGULARITIES ALONG LINE ARRANGEMENTS

被引:0
|
作者
De Borbon, Martin [1 ]
Spotti, Cristiano [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-800 Aarhus, Denmark
基金
新加坡国家研究基金会;
关键词
KAHLER-EINSTEIN METRICS; RICCI CURVATURE; MANIFOLDS; EXISTENCE; SURFACES; EQUATION; VOLUMES; LIMITS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite collection of lines Lj subset of CP2 together with real numbers 0 < beta(j) < 1 satisfying natural constraint conditions, we show the existence of a Ricci-flat Kahler metric g(RF) with cone angle 2 pi beta(j) along each line L-j asymptotic to a polyhedral Kahler cone at each multiple point. Moreover, we discuss a Chern-Weil formula that expresses the energy of gRF as a logarithmic Euler characteristic with points weighted according to the volume density of the metric.
引用
收藏
页码:195 / 239
页数:45
相关论文
共 50 条
  • [21] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [22] ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS, I
    Conlon, Ronan J.
    Hein, Hans-Joachim
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (15) : 2855 - 2902
  • [23] CYJAX: A package for Calabi-Yau metrics with JAX
    Gerdes, Mathis
    Krippendorf, Sven
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [24] Machine learned Calabi-Yau metrics and curvature
    Berglund, Per
    Butbaia, Giorgi
    Hubsch, Tristan
    Jejjala, Vishnu
    Pena, Damian Mayorga
    Mishra, Challenger
    Tan, Justin
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 27 (04) : 1107 - 1158
  • [25] UNIQUENESS OF SOME CALABI-YAU METRICS ON Cn
    Szekelyhidi, Gabor
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1152 - 1182
  • [26] Smooth asymptotics for collapsing Calabi-Yau metrics
    Hein, Hans-Joachim
    Tosatti, Valentino
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025, 78 (02) : 382 - 499
  • [27] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [28] Limiting behavior of local Calabi-Yau metrics
    Zharkov, Ilia
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (03) : 395 - 420
  • [29] On the degeneration of asymptotically conical Calabi–Yau metrics
    Tristan C. Collins
    Bin Guo
    Freid Tong
    Mathematische Annalen, 2022, 383 : 867 - 919
  • [30] DIAMETER BOUNDS FOR DEGENERATING CALABI-YAU METRICS
    Li, Yang
    Tosatti, Valentino
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (02) : 603 - 614