Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide

被引:20
|
作者
Ly, Diem Nguyen Phuoc [1 ,2 ]
Iqbal, Sadia [1 ,2 ]
Fosu-Nyarko, John [1 ,2 ]
Milroy, Stephen [1 ,3 ]
Jones, Michael G. K. [1 ,2 ,3 ]
机构
[1] Murdoch Univ, Coll Environm & Life Sci, Sch Agr Sci, Crop Biotechnol Res Grp, Perth, WA 6150, Australia
[2] Murdoch Univ, Food Futures Inst, State Agr Biotechnol Ctr, Ctr Crop & Food Innovat, Perth, WA 6150, Australia
[3] Murdoch Univ, Potato Res Western Australia, Perth, WA 6150, Australia
来源
PLANTS-BASEL | 2023年 / 12卷 / 02期
关键词
CRISPR-Cas9; gene-editing; potato; reducing sugars; acrylamide formation; vacuolar invertase; asparagine synthetase; potato crisps; Atlantic; Desiree; VACUOLAR INVERTASE; RESISTANCE; SUCROSE; RNA;
D O I
10.3390/plants12020379
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Storing potato tubers at cold temperatures, either for transport or continuity of supply, is associated with the conversion of sucrose to reducing sugars. When cold-stored cut tubers are processed at high temperatures, with endogenous asparagine, acrylamide is formed. Acrylamide is classified as a carcinogen. Potato processors prefer cultivars which accumulate fewer reducing sugars and thus less acrylamide on processing, and suitable processing cultivars may not be available. We used CRISPR-Cas9 to disrupt the genes encoding vacuolar invertase (VInv) and asparagine synthetase 1 (AS1) of cultivars Atlantic and Desiree to reduce the accumulation of reducing sugars and the production of asparagine after cold storage. Three of the four guide RNAs employed induced mutation frequencies of 17-98%, which resulted in deletions, insertions and substitutions at the targeted gene sites. Eight of ten edited events had mutations in at least one allele of both genes; for two, only the VInv was edited. No wild-type allele was detected in both genes of events DSpco7, DSpFN4 and DSpco12, suggesting full allelic mutations. Tubers of two Atlantic and two Desiree events had reduced fructose and glucose concentrations after cold storage. Crisps from these and four other Desiree events were lighter in colour and included those with 85% less acrylamide. These results demonstrate that multiplex CRISPR-Cas9 technology can generate improved potato cultivars for healthier processed potato products.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era
    Yagoubat, Akila
    Corrales, Rosa M.
    Bastien, Patrick
    Leveque, Maude F.
    Sterkers, Yvon
    TRENDS IN PARASITOLOGY, 2020, 36 (09) : 745 - 760
  • [42] Alzheimer disease mice improve with CRISPR-Cas9 gene editing
    Fyfe, Ian
    NATURE REVIEWS NEUROLOGY, 2019, 15 (05) : 247 - 247
  • [43] Gene Editing with Crispr-Cas9 for Treating Beta-Hemoglobinopathies
    Lee, Ciaran
    Bao, Gang
    Porteus, Matthew H.
    Cornu, Tatjana
    Miccio, Annarita
    Cradick, Thomas
    Cathomen, Toni
    Lundberg, Ante
    Mavilio, Fulvio
    BLOOD, 2015, 126 (23)
  • [44] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Haydar Frangoul
    四川生理科学杂志, 2020, 42 (04) : 506 - 506
  • [45] Gene Editing and Crop Improvement Using CRISPR-Cas9 System
    Arora, Leena
    Narula, Alka
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [46] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03): : 252 - 260
  • [47] Application of CRISPR-Cas9 gene editing for congenital heart disease
    Seok, Heeyoung
    Deng, Rui
    Cowan, Douglas B.
    Wang, Da-Zhi
    CLINICAL AND EXPERIMENTAL PEDIATRICS, 2021, 64 (06) : 269 - 279
  • [48] Reversible RNA acylation for control of CRISPR-Cas9 gene editing
    Habibian, Maryam
    McKinlay, Colin
    Blake, Timothy R.
    Kietrys, Anna M.
    Waymouth, Robert M.
    Wender, Paul A.
    Kool, Eric T.
    CHEMICAL SCIENCE, 2020, 11 (04) : 1011 - 1016
  • [49] CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy
    Fontana, Marianna
    Solomon, Scott D.
    Kachadourian, Jessica
    Walsh, Liron
    Rocha, Ricardo
    Lebwohl, David
    Smith, Derek
    Taubel, Jorg
    Gane, Edward J.
    Pilebro, Bjorn
    Adams, David
    Razvi, Yousuf
    Olbertz, Joy
    Haagensen, Alexandra
    Zhu, Peijuan
    Xu, Yuanxin
    Leung, Adia
    Sonderfan, Alison
    Gutstein, David E.
    Gillmore, Julian D.
    NEW ENGLAND JOURNAL OF MEDICINE, 2024, 391 (23): : 2231 - 2241
  • [50] Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies
    Papizan, James B.
    Porter, Shaina N.
    Sharma, Akshay
    Pruett-Miller, Shondra M.
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 115 - 134