High-performance multifunctional (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C high-entropy ceramic reinforced with low-loading 3D hybrid graphene-carbon nanotube

被引:25
|
作者
Sun, Jialin [1 ,2 ]
Zhao, Jun [3 ]
Zhou, Yonghui [3 ]
Zhai, Peng [1 ]
Yun, Xialun [4 ]
Huang, Zhifu [2 ]
Zhang, Hui [5 ]
Zhang, Guohua [6 ]
机构
[1] Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Shandong Univ, Sch Mech Engn, Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[6] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2023年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
high-entropy ceramic (HEC); three-dimensional graphene-carbon nanotube (3D G-CNT); toughening; lubricating; thermal conductivity (k)/electrical conductivity (sigma); MECHANICAL-PROPERTIES; TRIBOLOGICAL PROPERTIES; HAFNIUM CARBIDE; BIOINSPIRED CERAMICS; MATRIX COMPOSITES; DENSIFICATION; BEHAVIOR; MICROSTRUCTURE; FABRICATION; EVOLUTION;
D O I
10.26599/JAC.2023.9220688
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There has been growing interest in the high-entropy ceramic (HEC) recently owing to its tailorable compositions and microstructures, versatile properties, together with promising structural and functional applications. However, inferior fracture toughness (K-IC) and damage tolerance restricted many practical applications of the HEC. Herein, we addressed this challenge by incorporating a threedimensional graphene-carbon nanotube (3D G-CNT) as toughening agent in (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C. The resulting enhanced 3D G-CNT(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C featured an outstanding toughness of 8.23 MPa center dot m(1/2), while remaining superior strength (763 MPa) and hardness (24.7 GPa). An ultralow friction coefficient (0.15) coupled with an ultralow wear rate (w, 2.6x10(-7) mm3/(N center dot m)) in the 3D G-CNT/(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C was obtained primarily as a function of lubricating scrolls, in which two-dimensional (2D) graphene acted as a tribolayer, and one-dimensional (1D) carbon nanotubes acted as nano ball bearings embedded inside. Strikingly, the 3D G-CNT/(Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C exhibited rather low thermal conductivity (kappa) yet excellent electrical conductivity (sigma, 1.3x10(6) S/m) in comparison with the pure (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C. This study provided great potential for maximizing the physical and functional properties of the HEC for various applications.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [31] (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC-(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity
    Liu, Chao
    Yang, Yue-yang
    Zhou, Zhi-fang
    Nan, Ce-wen
    Lin, Yuan-hua
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (04) : 2764 - 2771
  • [32] Thermal and ablation properties of a high-entropy metal diboride: (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2
    Hoque, Md Shafkat Bin
    Milich, Milena
    Akhanda, Md Sabbir
    Shivakumar, Sashank
    Hoglund, Eric R.
    Staicu, Dragos
    Qin, Mingde
    Quiambao-Tomko, Kathleen F.
    Tomko, John A.
    Braun, Jeffrey L.
    Gild, Joshua
    Olson, David H.
    Aryana, Kiumars
    Koh, Yee Rui
    Galib, Roisul
    Vlahovic, Luka
    Robba, Davide
    Gaskins, John T.
    Zebarjadi, Mona
    Luo, Jian
    Hopkins, Patrick E.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (11) : 4581 - 4587
  • [33] Pressure-driven grain fusion and mechanical properties improvement of high-entropy (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C ceramics
    Chen, Wang
    Shen, Pengfei
    Li, Wei
    Ma, Shuailing
    Lian, Min
    Wei, Xinmiao
    Dan, Yaqian
    Zhao, Xingbin
    Qi, Mengyao
    Cui, Tian
    Riedel, Ralf
    MATERIALS & DESIGN, 2025, 253
  • [34] Enhancement of densification and mechanical property of (Hf0.2Zr0.2Ti0.2Nb0.2Ta0.2)N high-entropy bulk ceramic via silicon carbide addition
    Song, Wuyang
    Lu, Youjun
    Yang, Lutong
    Li, Maohui
    Zhang, Xiao
    Ma, Bo
    Wang, Chuyun
    Wang, Yanmin
    Li, Jinfeng
    Liu, Xiang
    JOURNAL OF ADVANCED CERAMICS, 2025, 14 (01):
  • [35] Oxidation behavior of (Hf 0.2 Zr 0.2 Ta 0.2 Ti 0.2 Me 0.2 )B 2 (Me=Nb,Cr) high-entropy ceramics at 1200 ° C in air
    Zhang, Yan
    Ni, Bo-Yu
    Chai, Yan-Fu
    Guo, Wei-Ming
    Zhang, Tian-Qi
    Yao, Wei-Feng
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (04)
  • [36] Mechanical properties and deformation mechanisms of (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C high-entropy ceramics characterized by nanoindentation and scratch tests
    Jin, Xiaochao
    Hou, Cheng
    Zhao, Yuxiang
    Wang, Zhuoran
    Wang, Jierui
    Fan, Xueling
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 35445 - 35451
  • [37] Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000?C
    Ni, Na
    Ding, Qi
    Shi, Yinchun
    Jiang, Juan
    Li, Ling
    Zhang, Ruiji
    Liu, Xuanzhen
    Fan, Yuchi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (06) : 2306 - 2319
  • [38] Low-temperature Preparation and Microwave Absorbing Properties of (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C High-entropy Ceramic
    Zhang H.
    Huang Z.
    Zhang Y.
    Wei J.
    Cailiao Daobao/Materials Reports, 2024, 38 (03):
  • [39] Dual-Porosity (Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C High-Entropy Ceramics with High Compressive Strength and Low Thermal Conductivity Prepared by Pressureless Sintering
    Yang, Qian
    Li, Cuiyan
    Ouyang, Haibo
    Gao, Ruinan
    Shen, Tianzhan
    Huang, Jianfeng
    MATERIALS, 2023, 16 (06)
  • [40] Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis
    Cai, Feiyan
    Ni, Dewei
    Chen, Bowen
    Ye, Li
    Sun, Yanan
    Lu, Jun
    Zou, Xuegang
    Zhou, Haijun
    He, Ping
    Zhao, Tong
    Dong, Shaoming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (12) : 5863 - 5871