Application of GO anchored mediator in a polymer electrolyte membrane for high-rate solid-state supercapacitors

被引:4
|
作者
Yan, Zhiwei [1 ]
Zhou, Xiangyang [1 ,4 ]
Wang, Yuchen [1 ]
Zhang, Chen [1 ]
Qiao, Xiaoyao [1 ]
Akin, Mert [1 ]
Mansour, Azzam N. [2 ]
Waller, Gordon H. [2 ]
Du, Zhijia [3 ]
机构
[1] Univ Miami, Dept Mech & Aerosp Engn, Coral Gables, FL 33146 USA
[2] NSWCCD, 9500 MacArthur Blvd, Bethesda, MD 20817 USA
[3] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37830 USA
[4] 1251 Mem Dr,McArthur Engn Bldg,Room 205, Coral Gables, FL 33146 USA
关键词
Solid-state supercapacitor; Polymer electrolyte membrane; Graphene oxide; Tungstosilicic acid lithium salt; High-rate energy storage; GRAPHENE OXIDE; ION BATTERIES; CARBON; CONDUCTION; COMPOSITE; GEL; FABRICATION; CHALLENGES; MANAGEMENT; EFFICIENT;
D O I
10.1016/j.memsci.2022.121285
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We synthesized a novel polymer electrolyte membrane by combining poly (vinylidene fluoride) (PVDF) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) with graphene oxide (GO) nanosheets and a lithium salt of tungstosilicic acid (Li4SiW12O40, hereafter, referred to SiWLi). The impact of the addition of GO/SiWLi on the microstructure and morphology of the membrane were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We found that adding the GO/SiWLi to the PVDF/LiTFSI polymer electrolyte membrane significantly reduced the pore size. Furthermore, the addition of the GO/SiWLi resulted in not only an increase of the ionic conductivity from 0.87 x 10(-2) to 3.12 x 10(-2) S cm(-1) but also an increase in the lithium-ion transference number from 0.52 to 0.87. The polymer electrolyte membranes with and without GO/SiWLi were utilized to fabricate solid-state supercapacitors. The supercapacitors fabricated with the membrane containing GO/SiWLi displayed 37.2% lower equivalent series resistance and 88.2% greater specific capacitance than those fabricated using the membrane without GO/SiWLi at 200 mV s(-1).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Redox-Mediator-Doped Gel Polymer Electrolyte Applied in Quasi-Solid-State Supercapacitors
    Yu, Fuda
    Huang, Miaoliang
    Wu, Jihuai
    Qiu, Zhaoyuan
    Fan, Leqing
    Lin, Jianming
    Lin, Yibing
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (02)
  • [22] Multifunctional MXene-Bonded Transport Network Embedded in Polymer Electrolyte Enables High-Rate and Stable Solid-State Zinc Metal Batteries
    Feng, Juan
    Ma, Dingtao
    Ouyang, Kefeng
    Yang, Ming
    Wang, Yanyi
    Qiu, Jimin
    Chen, Tingting
    Zhao, Jinlai
    Yong, Bo
    Xie, Yangsu
    Mi, Hongwei
    Sun, Lingna
    He, Chuanxin
    Zhang, Peixin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (45)
  • [23] A Flexible Solid-State Ionic Polymer Electrolyte for Application in Aluminum Batteries
    Mohammad, Amir
    Koehler, Thomas
    Biswas, Shuvrodev
    Stoecker, Hartmut
    Meyer, Dirk C.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (05) : 2914 - 2923
  • [24] Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors
    Latoszynska, Anna A.
    Zukowska, Grazyna Zofia
    Rutkowska, Iwona A.
    Taberna, Pierre-Louis
    Simon, Patrice
    Kulesza, Pawel J.
    Wieczorek, Wladyslaw
    JOURNAL OF POWER SOURCES, 2015, 274 : 1147 - 1154
  • [25] Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors
    Zhong, Xiongwei
    Tang, Jun
    Cao, Lujie
    Kong, Weiguang
    Sun, Zheng
    Cheng, Hua
    Lu, Zhouguang
    Pan, Hui
    Xu, Baomin
    ELECTROCHIMICA ACTA, 2017, 244 : 112 - 118
  • [26] Low-Operating Temperature, High-Rate and Durable Solid-State Sodium-Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode
    Du, Guangyuan
    Tao, Mengli
    Li, Jie
    Yang, Tingting
    Gao, Wei
    Deng, Jianhua
    Qi, Yuruo
    Bao, Shu-Juan
    Xu, Maowen
    ADVANCED ENERGY MATERIALS, 2020, 10 (05)
  • [27] Conducting polymer composites for unconventional solid-state supercapacitors
    Zhao, Chen
    Jia, Xiaoteng
    Shu, Kewei
    Yu, Changchun
    Wallace, Gordon G.
    Wang, Caiyun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4677 - 4699
  • [28] "Salt-in-Fiber" Electrolyte Enables High-Voltage Solid-State Supercapacitors
    Ghanem, Loujain G.
    Shaheen, Basamat S.
    Allam, Nageh K.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 6410 - 6416
  • [29] Ordered multiphase polymer nanocomposites for high-performance solid-state supercapacitors
    Li, Li
    Wang, Shiren
    Hui, David
    Qiu, Jingjing
    COMPOSITES PART B-ENGINEERING, 2015, 71 : 40 - 44
  • [30] PAMPS/MMT composite hydrogel electrolyte for solid-state supercapacitors
    Wang, Jin
    Yu, Xianghu
    Wang, Cui
    Xiang, Kechuang
    Deng, Mengde
    Yin, Huabing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 709 : 596 - 601