Prediction of the information processing speed performance in multiple sclerosis using a machine learning approach in a large multicenter magnetic resonance imaging data set

被引:16
|
作者
Marzi, Chiara [1 ,2 ,3 ]
d'Ambrosio, Alessandro [1 ,2 ]
Diciotti, Stefano [3 ,4 ]
Bisecco, Alvino [1 ,2 ]
Altieri, Manuela [1 ,2 ,5 ]
Filippi, Massimo [6 ,7 ]
Rocca, Maria Assunta [6 ,7 ]
Storelli, Loredana [6 ]
Pantano, Patrizia [8 ,9 ]
Tommasin, Silvia [8 ]
Cortese, Rosa [10 ]
De Stefano, Nicola [10 ]
Tedeschi, Gioacchino [1 ,2 ]
Gallo, Antonio [1 ,2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, MS Ctr, Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, 3T MRI Res Unit, Naples, Italy
[3] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marcon, Alma Mater Studiorum, Bologna, Italy
[4] Univ Bologna, Alma Mater Res Inst Human Ctr Artificial Intellig, Bologna, Italy
[5] Univ Campania Luigi Vanvitelli, Dept Psychol, Naples, Italy
[6] Univ Vita Salute San Raffaele, IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Milan, Italy
[7] Univ Vita Salute San Raffaele, IRCCS San Raffaele Sci Inst, Neurol & Neurophysiol Unit, Milan, Italy
[8] Sapienza Univ Rome, Dept Human Neurosci, Rome, Italy
[9] IRCCS Neuromed, Pozzilli, Italy
[10] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
关键词
artificial intelligence; cognitive performance; information processing speed; machine learning; MRI; multiple sclerosis; symbol digit modalities test; APPEARING WHITE-MATTER; COGNITIVE IMPAIRMENT; COLLABORATIVE RESEARCH; BRAIN MRI; NEUROPSYCHOLOGICAL IMPAIRMENT; GREY-MATTER; MS PATIENTS; ATROPHY; THALAMUS; EDUCATION;
D O I
10.1002/hbm.26106
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS.
引用
收藏
页码:186 / 202
页数:17
相关论文
共 50 条
  • [21] Prediction of tuberous sclerosis-associated neurocognitive disorders and seizures via machine learning of structural magnetic resonance imaging
    Shai Shrot
    Philip Lawson
    Omer Shlomovitz
    Chen Hoffmann
    Anat Shrot
    Bruria Ben-Zeev
    Michal Tzadok
    Neuroradiology, 2022, 64 : 611 - 620
  • [22] Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review
    Shoeibi, Afshin
    Khodatars, Marjane
    Jafari, Mahboobeh
    Moridian, Parisa
    Rezaei, Mitra
    Alizadehsani, Roohallah
    Khozeimeh, Fahime
    Gorriz, Juan Manuel
    Heras, Jonathan
    Panahiazar, Maryam
    Nahavandi, Saeid
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [23] The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review
    Md Zakir Hossain
    Elena Daskalaki
    Anne Brüstle
    Jane Desborough
    Christian J. Lueck
    Hanna Suominen
    BMC Medical Informatics and Decision Making, 22
  • [24] The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review
    Hossain, Md Zakir
    Daskalaki, Elena
    Bruestle, Anne
    Desborough, Jane
    Lueck, Christian J.
    Suominen, Hanna
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [25] Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)
    Kontopodis, Eleftherios E.
    Papadaki, Efrosini
    Trivzakis, Eleftherios
    Maris, Thomas G.
    Simos, Panagiotis
    Papadakis, Georgios Z.
    Tsatsakis, Aristidis
    Spandidos, Demetrios A.
    Karantanas, Apostolos
    Marias, Kostas
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (04)
  • [26] Prediction of the Effect of Sleep Deprivation on Response Inhibition via Machine Learning on Structural Magnetic Resonance Imaging Data
    Zhao, Rui
    Zhang, Xinxin
    Zhu, Yuanqiang
    Fei, Ningbo
    Sun, Jinbo
    Liu, Peng
    Yang, Xuejuan
    Qin, Wei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2018, 12
  • [27] Performance Evaluation of Supervised Machine Learning Algorithms Using Different Data Set Sizes for Diabetes Prediction
    Radja, Melky
    Emanuel, Andi Wahju Rahardjo
    2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, : 252 - 258
  • [28] Cognitive processing speed in multiple sclerosis clinical practice: association with patient-reported outcomes, employment and magnetic resonance imaging metrics
    Macaron, G.
    Baldassari, L. E.
    Nakamura, K.
    Rao, S. M.
    McGinley, M. P.
    Moss, B. P.
    Li, H.
    Miller, D. M.
    Jones, S. E.
    Bermel, R. A.
    Cohen, J. A.
    Ontaneda, D.
    Conway, D. S.
    EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 (07) : 1238 - 1249
  • [29] Baseline Cognition and Magnetic Resonance Imaging Measures of Patients With Relapsing Multiple Sclerosis in ENLIGHTEN: a Study of the Effect of Ozanimod on Cognitive Processing Speed
    DeLuca, J.
    Riolo, J. V.
    Cheng, C.
    Naismith, R. T.
    Wray, S.
    Bass, A. D.
    Fox, E.
    Riser, E.
    Chaudhry, B.
    Silva, D.
    Zivadinov, R.
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 49 - 50
  • [30] Machine learning prediction of atrial fibrillation in cardiovascular patients using cardiac magnetic resonance and electronic health information
    Dykstra, Steven
    Satriano, Alessandro
    Cornhill, Aidan K.
    Lei, Lucy Y.
    Labib, Dina
    Mikami, Yoko
    Flewitt, Jacqueline
    Rivest, Sandra
    Sandonato, Rosa
    Feuchter, Patricia
    Howarth, Andrew G.
    Lydell, Carmen P.
    Fine, Nowell M.
    Exner, Derek V.
    Morillo, Carlos A.
    Wilton, Stephen B.
    Gavrilova, Marina L.
    White, James A.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9