Prediction of the information processing speed performance in multiple sclerosis using a machine learning approach in a large multicenter magnetic resonance imaging data set

被引:16
|
作者
Marzi, Chiara [1 ,2 ,3 ]
d'Ambrosio, Alessandro [1 ,2 ]
Diciotti, Stefano [3 ,4 ]
Bisecco, Alvino [1 ,2 ]
Altieri, Manuela [1 ,2 ,5 ]
Filippi, Massimo [6 ,7 ]
Rocca, Maria Assunta [6 ,7 ]
Storelli, Loredana [6 ]
Pantano, Patrizia [8 ,9 ]
Tommasin, Silvia [8 ]
Cortese, Rosa [10 ]
De Stefano, Nicola [10 ]
Tedeschi, Gioacchino [1 ,2 ]
Gallo, Antonio [1 ,2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, MS Ctr, Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Dept Adv Med & Surg Sci DAMSS, 3T MRI Res Unit, Naples, Italy
[3] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marcon, Alma Mater Studiorum, Bologna, Italy
[4] Univ Bologna, Alma Mater Res Inst Human Ctr Artificial Intellig, Bologna, Italy
[5] Univ Campania Luigi Vanvitelli, Dept Psychol, Naples, Italy
[6] Univ Vita Salute San Raffaele, IRCCS San Raffaele Sci Inst, Div Neurosci, Neuroimaging Res Unit, Milan, Italy
[7] Univ Vita Salute San Raffaele, IRCCS San Raffaele Sci Inst, Neurol & Neurophysiol Unit, Milan, Italy
[8] Sapienza Univ Rome, Dept Human Neurosci, Rome, Italy
[9] IRCCS Neuromed, Pozzilli, Italy
[10] Univ Siena, Dept Med Surg & Neurosci, Siena, Italy
关键词
artificial intelligence; cognitive performance; information processing speed; machine learning; MRI; multiple sclerosis; symbol digit modalities test; APPEARING WHITE-MATTER; COGNITIVE IMPAIRMENT; COLLABORATIVE RESEARCH; BRAIN MRI; NEUROPSYCHOLOGICAL IMPAIRMENT; GREY-MATTER; MS PATIENTS; ATROPHY; THALAMUS; EDUCATION;
D O I
10.1002/hbm.26106
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS.
引用
收藏
页码:186 / 202
页数:17
相关论文
共 50 条
  • [1] Examination of processing speed deficits in multiple sclerosis using functional magnetic resonance imaging
    Genova, Helen M.
    Hillary, Frank G.
    Wylie, Glenn
    Rypma, Bart
    Deluca, John
    JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2009, 15 (03) : 383 - 393
  • [2] Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: Differential relationships with structural magnetic resonance imaging
    Covey, Thomas J.
    Zivadinov, Robert
    Shucard, Janet L.
    Shucard, David W.
    JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY, 2011, 33 (10) : 1129 - 1145
  • [3] A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging
    Storelli, Loredana
    Azzimonti, Matteo
    Gueye, Mor
    Vizzino, Carmen
    Preziosa, Paolo
    Tedeschi, Gioachino
    De Stefano, Nicola
    Pantano, Patrizia
    Filippi, Massimo
    Rocca, Maria A.
    INVESTIGATIVE RADIOLOGY, 2022, 57 (07) : 423 - 432
  • [4] Machine learning approach for Migraine Aura Complexity Score prediction based on magnetic resonance imaging data
    Katarina Mitrović
    Andrej M. Savić
    Aleksandra Radojičić
    Marko Daković
    Igor Petrušić
    The Journal of Headache and Pain, 24
  • [5] Machine learning approach for Migraine Aura Complexity Score prediction based on magnetic resonance imaging data
    Mitrovic, Katarina
    Savic, Andrej M.
    Radojicic, Aleksandra
    Dakovic, Marko
    Petrusic, Igor
    JOURNAL OF HEADACHE AND PAIN, 2023, 24 (01):
  • [6] A Deep-Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging
    Storelli, L.
    Azzimonti, M.
    Gueye, M.
    Vizzino, C.
    Preziosa, P.
    Tedeschi, G.
    De Stefano, N.
    Pantano, P.
    Filippi, M.
    Rocca, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 118 - 119
  • [7] Differentiation of tumefactive multiple sclerosis and glioblastoma using radiomics features extracted from magnetic resonance imaging and machine learning
    Conte, Gian Marco
    Eckel-Passow, Jeanette E.
    Tobin, W. Oliver
    Decker, Paul
    Lachance, Daniel H.
    Jenkins, Robert B.
    Erickson, Bradley J.
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [8] A pipeline approach with spatial information for segmenting multiple sclerosis lesions on brain magnetic resonance imaging
    Cabezas, M.
    Bach-Cuadra, M.
    Oliver, A.
    Llado, X.
    Freixenet, J.
    Vilanova, J. C.
    Valls, L.
    Ramio-Torrenta, L.
    Huerga, E.
    Pareto, D.
    Rovira, A.
    MULTIPLE SCLEROSIS JOURNAL, 2011, 17 : S381 - S381
  • [9] Machine learning classification of first-episode psychosis using cortical thickness: a large multicenter magnetic resonance imaging study
    Pigoni, A.
    Squarcina, L.
    Dwyer, D.
    Borgwardt, S.
    Crespo-Facorro, B.
    Dazzan, P.
    Smesny, S.
    Spaniel, F.
    Spalletta, G.
    Sanfelici, R.
    Antonucci, L.
    Reuf, A.
    Oeztuerk, O.
    Schmidt, A.
    Ciufolini, S.
    Harrisberger, F.
    Langbein, K.
    Gussew, A.
    Reichenbach, J.
    Zaytseva, Y.
    Piras, F.
    Bellani, M.
    Ruggeri, M.
    Lasalvia, A.
    Tordesillas-Gutierrez, D.
    Ortiz, V.
    Koutsouleris, N.
    Brambilla, P.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2020, 40 : S285 - S286
  • [10] Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review
    Szekely-Kohn, Adam C.
    Castellani, Marco
    Espino, Daniel M.
    Baronti, Luca
    Ahmed, Zubair
    Manifold, William G. K.
    Douglas, Michael
    ROYAL SOCIETY OPEN SCIENCE, 2025, 12 (01):