Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine

被引:36
|
作者
Hu, Kui [1 ]
Cheng, Yiwei [2 ]
Wu, Jun [1 ]
Zhu, Haiping [2 ]
Shao, Xinyu [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Predictive models; Feature extraction; Recurrent neural networks; Data models; Prognostics and health management; Degradation; Data mining; Aircraft engine (AE); bidirectional recurrent neural networks (BDRNNs); deep learning; ensemble learning (EL); prognostics and health management (PHM); remaining useful life; ROLLING ELEMENT BEARINGS; PROGNOSTICS; MACHINE; LSTM;
D O I
10.1109/TCYB.2021.3124838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remaining useful life (RUL) prediction of aircraft engine (AE) is of great importance to improve its reliability and availability, and reduce its maintenance costs. This article proposes a novel deep bidirectional recurrent neural networks (DBRNNs) ensemble method for the RUL prediction of the AEs. In this method, several kinds of DBRNNs with different neuron structures are built to extract hidden features from sensory data. A new customized loss function is designed to evaluate the performance of the DBRNNs, and a series of the RUL values is obtained. Then, these RUL values are reencapsulated into a predicted RUL domain. By updating the weights of elements in the domain, multiple regression decision tree (RDT) models are trained iteratively. These models integrate the predicted results of different DBRNNs to realize the final RUL prognostics with high accuracy. The proposed method is validated by using C-MAPSS datasets from NASA. The experimental results show that the proposed method has achieved more superior performance compared with other existing methods.
引用
收藏
页码:2531 / 2543
页数:13
相关论文
共 50 条
  • [21] Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    Wang, Shengyue
    Chen, Shaowei
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [22] Remaining Useful Life Estimation by Empirical Mode Decomposition and Ensemble Deep Convolution Neural Networks
    Yao, Qingfeng
    Yang, Tianji
    Liu, Zhi
    Zheng, Zeyu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [23] Gated Recurrent Unit Networks for Remaining Useful Life Prediction
    Li, Li
    Zhao, Zhen
    Zhao, Xiaoxiao
    Lin, Kuo-Yi
    IFAC PAPERSONLINE, 2020, 53 (02): : 10498 - 10504
  • [24] Remaining useful life prediction of aircraft engine based on degradation pattern learning
    Zhao, Zeqi
    Bin Liang
    Wang, Xueqian
    Lu, Weining
    Reliability Engineering and System Safety, 2017, 164 : 74 - 83
  • [25] Remaining useful life prediction of aircraft engine based on degradation pattern learning
    Zhao, Zeqi
    Liang, Bin
    Wang, Xueqian
    Lu, Weining
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 164 : 74 - 83
  • [26] Remaining useful life prediction for aircraft engine based on LSTM-DBN
    Li J.
    Chen Y.
    Xiang H.
    Cai Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (07): : 1637 - 1644
  • [27] Ensemble of optimized echo state networks for remaining useful life prediction
    Rigamonti, Marco
    Baraldi, Piero
    Zio, Enrico
    Roychoudhury, Indranil
    Goebel, Kai
    Poll, Scott
    NEUROCOMPUTING, 2018, 281 : 121 - 138
  • [28] Autoencoder Quasi-Recurrent Neural Networks for Remaining Useful Life Prediction of Engineering Systems
    Cheng, Yiwei
    Hu, Kui
    Wu, Jun
    Zhu, Haiping
    Shao, Xinyu
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (02) : 1081 - 1092
  • [29] Enhancing aircraft engine remaining useful life prediction via multiscale deep transfer learning with limited data
    Liu, Qi
    Zhang, Zhiyao
    Guo, Peng
    Wang, Yi
    Liang, Junxin
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (01) : 343 - 355
  • [30] A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset
    Asif, Owais
    Haider, Sajjad Ali
    Naqvi, Syed Rameez
    Zaki, John F. W.
    Kwak, Kyung-Sup
    Islam, S. M. Riazul
    IEEE ACCESS, 2022, 10 : 95425 - 95440